K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2018

bài này có trong đề thi cuối học kì 1 ko ???????

21 tháng 12 2018

a) Tìm được dư là 4227

b) Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈ N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505

Vậy A có tận cùng là 5.

26 tháng 11 2019

Dễ thấy mọi số mũ đều có dạng 4k+1

\(A=1^1+2^5+3^9+4^{13}+.....+504^{2013}+505^{2017}\)

\(=\overline{.....1}+\overline{....2}+\overline{.....3}+.....+\overline{......5}\)

Chia tổng A thành 50 nhóm và thừa 5 số hạng cuối

Chữ số tận cùng của 50 là 

50=10*5 có chứa thừa số 10

nên cstc của 50 nhóm là 0

cstc của 5 số hạng cuối là 5

=> A có tận cùng là 5

Nguồn:Shitbo

26 tháng 11 2019

a khi chia cho 17 dư 11 suy ra a có dạng \(17p+11\)

\(\Rightarrow a+74=17p+85⋮17\)

a khi chia cho 23 dư 18 suy ra a có dạng 

\(23q+18\Rightarrow a+74=23q+92⋮23\)

a khi chia cho 11 dư 3 suy ra a có dạng 

\(11r+3\Rightarrow a+74=11r+77⋮11\)

\(\Rightarrow a+74\in BC\left(17;23;11\right)\)

\(\Rightarrow a+74=4301k\)

\(\Rightarrow a+74-4301=4301k-4301\)

\(\Rightarrow a-4227=4301\left(k-1\right)\Rightarrow a=4301\left(k-1\right)+4227\) dư 4327

26 tháng 12 2018

Dễ thấy mọi số mũ đều có dạng 4k+1

=> \(1+2^5+3^9+4^{13}+........+504^{2013}+505^{2017}=\left(....1\right)+\left(.....2\right)+..........+\left(...4\right)+\left(....5\right)\)

chia tổng A thành 50 nhóm và thừa 5 số hạng cuối

Chữ số tận cùng của 50 là:

50=10.5 có chứa thừa số 10

nên cstc của 50 nhóm là: 0

cstc của của 5 số hạng cuối là: 5

=> A có tc là: 5

26 tháng 12 2018

Cảm ơn shitbo nhiều !!!

9 tháng 5 2019

a) Ta có:

a=17k+11⇒a+74=17k+85⋮17

a=23t+18⇒a+74=23t+92⋮23

a=11m+3⇒a+74=11m+77⋮11

Từ đó ta có: a+74∈ BC(17;23;11)

BCNN(17;23;11)=17.23.11=4301

➞a+74∈ B(4301)

⇒a+74=4301q (q∈N*)

⇒a+74-4301=4301q-4301

⇒a-4227=4301(q-1)⇒a=4301(q-1)+4227

Vậy a khi chia cho 4301 thì dư 4227.

b) Nhận xét: số mũ của các số hạng có dạng 4k+1(k∈N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1+2+3+...+505

Vậy chữ số tận cùng của A là 5

8 tháng 12 2018

a) Ta có:

a=17x+11=23y+18=11z+3 (x,y,z E N)

=> a+74=17x+85=23y+92=11z+77

=> a+74 chia hết cho 17;23;11

Vì 3 số trên ntcn nên: a+74 chia hết cho 17.23.11=4301

Đặt: a+74=4301k (k E N*)

=> a=4301(k-1)+4227

nên: số dư của a khi chia cho 4301 là: 4227

b) 11+25+39+413+..........+505201

Ta dễ thấy rằng: 1;5;9;...vv là các số có dạng: 4k+1 (k E N)

=> 11+25+39+............+505201=(...1)+(...2)+(....3)+(...4)+........+(...4)+(...5)

Tổng tận cùng của 10 stn liên tiếp là:

1+2+3+4+5+6+7+8+9+0=45 có tc=5

Ta có 50 cặp nv nên sẽ có tc=0

5 số cuối là: (...1);(...2);(...3);(..4);(...5)

tc=1+2+3+4+5=15 có tc=5

Vậy tổng trên có tc=0+5=5

A có tc=5

9 tháng 12 2018

thank you nha

14 tháng 12 2018

Sai đề rồi bạn nhé

14 tháng 12 2018

Đó là đề ôn của mình mà

22 tháng 9 2019

A= 75×[(42011 - 1)/3] +25

A = 25×(42011- 1) +25

A= 25×4×42010 - 25 +25

A= 100 × 42010

A chia hết cho 100

10 tháng 12 2022

Bài 2:

\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^9\left(1+5\right)\)

\(=6\left(5+5^3+...+5^9\right)⋮6\)