K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

Với ba số a, b và c mà c > 0, ta có: Nếu a ≤ b thì ac ≤ bc

Khi đó, ta có: a + 1 ≤ b + 2 ⇒ 2( a + 1 ) ≤ 2( b + 2 ) ⇔ 2a + 2 ≤ 2b + 4.

Chọn đáp án C.

2 tháng 11 2019

Với ba số a, b và c mà c > 0, ta có: Nếu a ≤ b thì ac ≤ bc

Khi đó, ta có: a + 1 ≤ b + 2 ⇒ 2( a + 1 ) ≤ 2( b + 2 ) ⇔ 2a + 2 ≤ 2b + 4.

Chọn đáp án C.

4 tháng 5 2018

Nhân cả hai vế của bất đẳng thức a + 1 ≤ b + 2 với 2 > 0 ta được

2(a + 1) ≤ 2(b + 2) Û 2a + 2 ≤ 2b + 4.

Đáp án cần chọn là: D

16 tháng 5 2019

Nhân cả hai vế của bất đẳng thức a - 2 ≤ b - 1 với 2 > 0 ta được:

2(a - 2) ≤ 2(b - 1) Û 2a - 4 ≤ 2b - 2.

Đáp án cần chọn là: D

15 tháng 10 2021

1.

\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)

Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)

Từ đó ta được đpcm

 

 

 

15 tháng 10 2021

uầy e đọc chả hỉu j lun :(

4 tháng 7 2015

a + b = c => (a + b)² = c² <=> a²+ b² + 2ab = c² 
=> c^4 = (a² + b² + 2ab)² 
=> c^4 = a^4 + b^4 + 6a²b² + 4a^3.b + 4a.b^3 

vậy: a^4 + b^4 + c^4 = 2a^4 + 2b^4 + 6a²b² + 4a^3.b + 4a.b^3 
= 2a^4 + 2a²b² + 4a^3.b + 2b^4 + 2a²b² + 4a.b^3 + 2a²b² 
= 2a²(a² + b² + 2ab) + 2b²(b² + a² + 2ab) + 2a²b² 
= 2a²(a + b)² + 2b²(a + b)² + 2a²b² 
= 2a²b² + 2(a + b)²(a² + b²) 
= 2a²b² + 2c²(a² +b²) 
= 2a²b² + 2b²c² + 2c²a² (đpcm) 

4 tháng 7 2015

 gt: a + b = c => (a + b)² = c² <=> a²+ b² + 2ab = c² 
=> c^4 = (a² + b² + 2ab)² 
=> c^4 = a^4 + b^4 + 6a²b² + 4a^3.b + 4a.b^3 

vậy: a^4 + b^4 + c^4 = 2a^4 + 2b^4 + 6a²b² + 4a^3.b + 4a.b^3 
= 2a^4 + 2a²b² + 4a^3.b + 2b^4 + 2a²b² + 4a.b^3 + 2a²b² 
= 2a²(a² + b² + 2ab) + 2b²(b² + a² + 2ab) + 2a²b² 
= 2a²(a + b)² + 2b²(a + b)² + 2a²b² 
= 2a²b² + 2(a + b)²(a² + b²) 
= 2a²b² + 2c²(a² +b²) 
= 2a²b² + 2b²c² + 2c²a² (đpcm) 

2 tháng 5 2023

a. Ta có: a > b

4a > 4b ( nhân cả 2 vế cho 4)

4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)

b. Ta có: a > b

-2a < -2b ( nhân cả 2 vế cho -2)

1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)

d. Ta có: a < b 

-2a > -2b ( nhân cả 2 vế cho -2)

5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)

 

2 tháng 5 2023

Cảm ưn 😆😊🥰🤩😽🙊🙈🙉

17 tháng 7 2016


A = 2a2b+ 2b2c+ 2a2c− a− b− c4

<=> A = 4a2c− ( a4+b+ c− 2a2b+ 2a2c− 2b2c)

<=> A = 4a2c− ( a− b+ c2)2

<=> A = ( 2ac + a− b+ c) ( 2ac − a+ b− c)

<=> A = [ (a+c)− b] ( b− (a−c)2)

<=> A = ( a+b+c) (a+c−b) (b+a−c) (b−a+c)
Mà a, b, c là 3 cạnh của tam giác nên: Mà a, b, ca, b, c là 33 cạnh của tam giác nên:\

a+b+c>0

a+c−b>0

b+a−c>0

b−a+c>

=> (a+b+c)(a+c−b)(b+a−c)(b−a+c)>0

A>0 (Dpcm)