Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=1-3+3^2-3^3+...-3^{2017}+3^{2018}\)
\(=>3A=3-3^2+3^3-3^4+...-3^{2018}+3^{2019}\)
\(=>3A+A=1+3^{2019}\)
\(=>4A-1=3^{2019}\)
=>4A-1 là một lũy thừa của 3 =>(đpcm)
Hj, tự nhiên hôm nay chăm rồi làm thoy mak Đặng Quốc Huy
Ta có:A=1-3+32-33+........-32003+22004
3A=3-32+33-34+..........+32003-32004+32005
3A+A=4A=1+32005
4A-1=32005
Vậy 4A-1 là lũy thừa của 3(đpcm)
3A=3-3^2+3^3-3^4+...-3^2006+3^2007
3A+A=(3-3^2+3^3-3^4+...-3^2006+3^2007)+(1-3+3^2-3^3+...-3^2005+3^2006)
4A=3^2007+1
3A=3-32+33-34+............+32003-32004+32005
3A+A=(3-32+33-34+............+32003-32004+32005)+(1-3+32-33+.............+32002-32003+32004)
4A=32005-1
4A-1=32005
Vậy 4A-1 là lũy thừa của 3(đpcm)
3A=3-32+33 -34 +.........-32004+32005
3A+A=3-3^2+3^3-3^4+......-3^2004+3^2005+1-3+3^2-3^3+3^4-....-3^2003+3^2004
4A=3^2005+1
=>4A-1=3^2005 là lũy thừa của 3 =>ĐPCM
2018 A = 2018 - 2018^2 + 2018^3 +...- 2018^2018 + 2018^2019
=> A + 2018 A = 1 +2018^2019
=> 2019 A = 1 + 2018^2019
=> 2019 A - 1 = 2018^2019
=> 2019 A -1 là 1 lũy thừa của 2018
Ta có : \(A=1-3+3^2-3^3+...+3^{2010}-3^{2011}+3^{2012}\)
\(\Rightarrow3A=3-3^2+3^3-3^4+....+3^{2011}-3^{2012}+3^{2013}\)
\(\Rightarrow3A+A=3^{2013}+1\)
\(\Rightarrow4A=3^{2013}+1\)
\(\Rightarrow4A-1=3^{2013}\) là lũy thừa bậc 3. (đpcm)
3.A=3 .\(\left(1-3+3^2-3^3+...-3^{2011}+3^{2012}\right)\)
3.A= \(3-3^2+3^3-3^4+..-3^{2012}+3^{2013}\)
3A+A=\(3-3^2+3^3-3^4+..-3^{2012}+3^{2013}\)+\(\left(1-3+3^2-3^3+...-3^{2011}+3^{2012}\right)\)
4A= \(1+3^{2013}\)
nên 4A-1=32013
Vậy 4A-1 là lũy thừa của 3