K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{51}.\)

\(\Rightarrow2A-A=A=\left(2+2^2+2^3+2^4+...+2^{51}\right)-\left(1+2^2+2^3+...+2^{50}\right)\)

\(A=2^{51}-1\)

8 tháng 10 2018

\(A=1+2+2^2+2^3+....+2^{50}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{51}\)

\(\Rightarrow2A-A=(2+2^2+2^3+2^4+...+2^{51})\)_\((1+2^2+2^3+...+2^{50})\)

Hay \(A=2^{51}-1\)

14 tháng 1 2022

\(A=1+2+2^2+...+2^{50}\)

\(\Rightarrow2A=2+2^3+2^4+...+2^{51}\)

\(\Rightarrow2A-A=2+2^3+2^4+...+2^{51}-1-2-2^2-...-2^{50}\)

\(\Rightarrow A=2^{51}-1\)

\(C=B-A=2^{51}-2^{51}+1=1\)

29 tháng 8 2023

giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!

29 tháng 8 2023

Câu b, bài b1 chứng minh \(a=2^{2006}-1?\)

1 tháng 11 2021

\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)

1 tháng 11 2021

Mk đang hỏi tại sao lại có phần (1+2) mà bạn. Bạn biết thì chỉ mk với

1)

a)     A = 21 + 22 + … + 22010

    = (21 + 22) + (23 + 24) + … + (22009 + 22010)

    = 2(1 + 2) + 23(1 + 2) + … + 22009(1 + 2)

    = 2.3 + 23.3 + … + 22009.3

Vì 3 chia hết cho 3 nên A chia hết cho 3.

  A = 21 + 22 + … + 22010

     = (21 + 22 + 23) + (24 + 25 + 26) + … + (22008 + 22009 + 22010)

     = 2(1 + 2 + 22) + 24(1 + 2 + 22) + … + 22008(1 + 2 + 22)

     = 2.7 + 24.7 + … + 22008.7

Vì 7 chia hết cho 7 nên A chia hết cho 7.

b)   B = 31 + 32 + … + 32010

          = (31 + 32 )+ (33 + 34) + (35 + 36) + … + (32009 + 32010)

          = 3(1 + 3) + 33(1 + 3) + … + 32009(1 + 3)

          = 3.4+ 33.4 + … + 32009.4

Vì 4 chia hết cho 4 nên B chia hết cho 4.

B = 31 + 32 + … + 32010

    = (31 + 32 + 33) + (34 + 35 + 36) + … + (32008 + 32009 + 32010)

    = 3(1 + 3 + 32) + 34(1 + 3 + 32) + … + 32008(1 + 3 + 32)

    = 3.13 + 34.13 + … + 32008.13

Vì 13 chia hết cho 13 nên B chia hết cho 13.

c)     C = 51 + 52 + … + 52010

           = (51 + 52 +53 + 54) + … + (52007 + 52008 + 52009 + 52010)

           = 5(1 + 5 + 52 + 53) + … + 52007(1 + 5 + 52 + 53)

           = 5.156 + … + 52007.156

Vì 156 chia hết cho 6, 12 nên C chia hết cho 6 và 12.

2) 

a)     Ta có: A = 20 + 21 + 22 + … + 22010 = 22011 – 1

     Vậy A = B ( vì đều bằng 22011 – 1 )

b)    Ta có: A =  2009.2011 = 2009.(2010 + 1) = 2009.2010 + 2009

           B =  20102 = 2010.2010 = (2009 + 1).2010 = 2009.2010 + 2010

Vì ở A và B đều có 2009.2010 mà 2009 < 2010 nên A < B.

c)     Ta có: A = 1030 = 103.10 = (103)10 = 10010

            B = 2100 = 210.10 = (210)10  = 102410

Vì 10010 < 102410 nên A < B.

d)    Ta có: A = 333444 = 3334.111 = (3334)111

                B = 444333 = 4443.111 = (4443)111

Ta so sánh 3334 và 4443

3334 = (3.111)4 = 34.1114 = 81.111.1113

4443 = (4.111)3 = 43.1113 = 64.1113

Vì 81.111 > 64 => 3334 > 4443 => (3334)111 > (4443)111 => A > B.

2)a)     Ta có: A = 20 + 21 + 22 + … + 22010 = 22011 – 1

     Vậy A = B ( vì đều bằng 22011 – 1 )

b)    Ta có: A =  2009.2011 = 2009.(2010 + 1) = 2009.2010 + 2009

           B =  20102 = 2010.2010 = (2009 + 1).2010 = 2009.2010 + 2010

Vì ở A và B đều có 2009.2010 mà 2009 < 2010 nên A < B.

c)     Ta có: A = 1030 = 103.10 = (103)10 = 10010

            B = 2100 = 210.10 = (210)10  = 102410

Vì 10010 < 102410 nên A < B.

d)    Ta có: A = 333444 = 3334.111 = (3334)111

                B = 444333 = 4443.111 = (4443)111

Ta so sánh 3334 và 4443

3334 = (3.111)4 = 34.1114 = 81.111.1113

4443 = (4.111)3 = 43.1113 = 64.1113

Vì 81.111 > 64 => 3334 > 4443 => (3334)111 > (4443)111 => A > B.

15 tháng 4 2018

\(Ta\)có : 

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{20^2}< \frac{1}{19.20}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)

\(\Rightarrow A< 1-\frac{1}{20}< 1\left(Đpcm\right)\)

Chúc bạn học tốt !!! 

27 tháng 3 2020

Ta luôn có: n2 luôn cùng tính chẵn lẻ với n.

Theo đề bài, a1+a2+...+a100 = 22015 là số chẵn.

⇒ Số số lẻ trong các số a1;a2;...;a100 là số chẵn. (Vì tổng các số lẻ trong các số a1;a2;...;a100 là số chẵn)(Hơi khó hiểu chút ^ ^)

⇒ Số số lẻ trong các số a12;a22;...;a1002 là số chẵn.

⇒Tổng các số lẻ trong các số a12;a22;...;a1002 là số chẵn.

Và tổng các số chẵn trong các số a12;a22;...;a1002 cũng là số chẵn.

Vây, tổng các số a12;a22;...;a1002 là số chẵn (ĐPCM)

28 tháng 3 2020

khó hiểu

29 tháng 6 2016

\(a.A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\) 

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(2A-A=1-\frac{1}{2^{99}}\)

\(A=1-\frac{1}{2^{99}}< 1\)

\(b.B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{203}{3^{100}}< 3\)

\(A< \frac{3}{4}\)

Ủng hộ mk nha ^_^

19 tháng 2 2016

1.Gộp 3 số vào thành 1 tổng rồi tính:

(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)

=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)

=1*15+2^3*15+...+2^37*15

=15*(1+2^3+...+2^39) chia hết cho 15