K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2022

Sửa đề : Cho 7 điểm nằm trong hình chữ nhật có kích thước \(3\times4\)

CMR: tồn tại 2 điểm có khoảng cách nhỏ hơn 3

\(4\times6\) thì em chịu :(( )

                              Giải

Chia hình chữ nhật lớn thành 6 hình chữ nhật có kích thước \(1\times2\)

Theo nguyên lí dirichlet thì có 2 điểm nằm trong cùng một hình.

Xét tam giác nhỏ, ta có:

Đường chéo \(=\sqrt{1^2+2^2}=\sqrt{5}< 3\)

Mà trong hình chữ nhật đường chéo cao nhất nên luôn tồn tại 2 điểm có khoảng cách nhỏ hơn 3.

 

10 tháng 3 2022

 Đề đúng nha em, anh bt em copy mạng đó

27 tháng 5 2017

dễ bạn nào muốn biết chỉ cần 3 cái là xong

yên tâm tớ không câu đâu

câu tớ là con chó

5 tháng 4

Chia tam giác đó thành 16 tam giác đều bằng nhau cạnh 1/4. Theo Dirichlet tồn tại 2 điểm cùng thuộc 1 tam giác và khoảng cách giữa chúng không lớn hơn 1/4 .

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.CMR tồn...
Đọc tiếp

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.

Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)

2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.

CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín

3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.

CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại

4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.

CMR qua mỗi điểm co không quá 5 đoạn thẳng

5. Cho 7 số nguyên dương khác nhau không vượt quá 1706. 

CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a

1
20 tháng 4 2018

 Trên mặt phẳng cho n > = điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.

CMR qua mỗi điểm co không quá 5 đoạn thẳng

20 tháng 5 2023

 Gọi \(2n+1\) điểm đó là \(A_1,A_2,...,A_{2n+1}\). Do số điểm là hữu hạn nên tồn tại 1 đoạn thẳng \(A_iA_j\left(i\ne j\right)\) sao cho \(A_iA_j\) lớn nhất trong các \(A_kA_l\left(k\ne l;k,l=\overline{1,2n+1}\right)\)

 TH1: Nếu \(A_iA_j\le1\), ta dựng 2 đường tròn \(\left(A_i,1cm\right)\) và \(\left(A_j,1cm\right)\). Dĩ nhiên nếu có bất kì điểm \(A_m\) nào nằm ngoài 2 đường tròn trên thì mâu thuẫn với giả thiết \(A_iA_j\) là đoạn thẳng có độ dài lớn nhất. Do đó, tất cả \(2n+1\) điểm sẽ nằm trong 2 đường tròn. Theo nguyên lí Dirichlet sẽ tồn tại 1 hình tròn chứa \(n+1\) điểm trong \(2n+1\) điểm đã cho. Đó là hình tròn cần tìm.

 TH2: Nếu \(A_iA_j>1\), ta vẫn dựng 2 đường tròn \(\left(A_i,1cm\right)\) và \(\left(A_j,1cm\right)\). Khi đó nếu có bất kì điểm \(A_m\) nào nằm ở ngoài cả 2 hình tròn thì \(A_mA_i\) và \(A_mA_j\) đều lớn hơn 1. Khi đó bộ 3 điểm \(\left(A_i,A_j,A_m\right)\) mâu thuẫn với giả thiết trong 3 điểm bất kì luôn có 2 điểm có khoảng cách nhỏ hơn 1. Do vậy, tất cả các điểm đã cho đều nằm trong 2 đường tròn kể trên. Lại theo nguyên lí Dirichlet thì tồn tại \(n+1\) điểm thuộc cùng một hình tròn. Đấy chính là hình tròn cần tìm.

 Vậy trong mọi trường hợp, ta đều tìm được 1 hình tròn bán kính 1cm chứa \(n+1\) điểm trong số \(2n+1\) điểm đã cho. Ta có đpcm.

20 tháng 5 2023

 Mình giải thích thêm trường hợp 1 nhé. Nếu như có 1 điểm \(A_m\) nằm ngoài 1 trong 2 đường tròn \(\left(A_i,1\right)\) và \(\left(A_j,1\right)\) thì 1 trong 2 đoạn \(A_mA_i\) và \(A_mA_j\) sẽ lớn hơn 1. Không mất tính tổng quát, giả sử đó là đoạn \(A_mA_i\). Khi đó \(A_mA_i>1\ge A_iA_j\), vô lí vì ta đã giả sử \(A_iA_j\) là đoạn có độ dài lớn nhất.