Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại đây:
Câu hỏi của Park Jihoon - Toán lớp 7 - Học toán với OnlineMath
Cách làm là như vậy đó.Bạn tự nghiên cứu nha !
a)AM≥AH vì AM là đường xiên
AM≤AB vì hình chiếu của AM ≤ hình chiếu của AB
b)vị trí của AM để đạt giá trị nhỏ nhất: trùng với điểm H vì đường vuông góc là đường ngắn nhất,để đạt giá trị lon nhất:trùng với điểm C hoặc B vì HB và HC là 2 hình chiếu lớn nhất
a. Ta có :a>hoặc =b ,a>hoặc =c>0
suy ra :b - c<a< b+c
Ta có : a< b+c
suy ra :a+a<b+c+a
suy ra:2a<a+b+c
suy ra :a< a+b+c\2
b. ta có : a> hoặc =b>0 ,a> hoặc =c>0
suy ra :b+c < hoặc = a+a
suy ra : b+c < hoặc = 2a
suy ra :a+b+c< hoặc = 3a
suy ra : a+b+c \3 < hoặc = a
Gọi số tuổi của 33 bạn lần lượt là: a1,a2,a3,…,a33.
Giả sử không có bất kì 20 bạn nào trong lớp có tổng số tuổi lớn hơn 260, nghĩa là 20 bạn bất kì luôn có số tuổi bé hơn hoặc bằng 260.
Ta xét 33 nhóm, mỗi nhóm gồm 20 bạn học sinh như sau:
Nhóm 1 gồm: a1,a2,a3,…,a20 có tổng số tuổi là S1
Nhóm 2 gồm: a2,a3,a4,…,a21 có tổng số tuổi là S2
Nhóm 3 gồm: a3,a4,a5,…,a22 có tổng số tuổi là S3
...
Nhóm 33 gồm: a33,a1,a2,…,a19 có tổng số tuổi là S33
Vì mỗi nhóm trên đều có tổng số tuổi nhỏ hơn hoặc bằng 260 nên ta có: S1+S2+S3+…+S33≤260.33=8580(1)
Mặt khác ta lại có:
S1+S2+S3+…+S33 =(a1+a2+a3+…+a20)+(a2+a3+a4+…+a21)+… +(a33+a1+a2+…+a19) =20.(a1+a2+a3+…+a33)=20.430=8600(2)
Từ (1) và (2) suy ra mâu thuẫn, do đó điều giả sử là sai.
Nghĩa là ta luôn tìm được 20 bạn có tổng số tuổi lớn hơn 260(đpcm)
Gọi 6 số đã cho là a, b, c, d, e, f.
Ta chứng minh cả 6 số đều lớn hơn 1. Không mất tính tổng quát, giả sử a < 1.
Vì tổng của a với 4 trong 5 số còn lại lớn hơn 9 nên tổng của 4 số này > 8. (1)
Ta có b + c + d + e + f < 10, vì c + d + e + f > 8 (do (1)) nên b < 2. Tương tự c, d, e, f < 2.
Do đó c + d + e + f < 8 trái với (1). Suy ra điều giả sử sai hay tất cả các số đã cho đều lớn hơn 1.
Vậy tích của 6 số đó luôn lớn hơn 1. (đpcm)
hông biết