K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Học hành thế này! Tớ mách cô Hiền nhé!

28 tháng 6 2021

\(1.\)

Theo đề ra, ta có:

\(ax+by=c\)

\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)

\(cx+by=b\)

\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)

\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)

Khi đó ta có:

\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)

18 tháng 8 2017

1) pp: biến đổi tương đương

ta có: VT= \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+x^2\right).\)

        = \(\left(ax\right)^2+\left(ay\right)^2+\left(az\right)^2+\left(bx\right)^2+\left(by\right)^2+\left(bz\right)^2+\left(cx\right)^2+\left(cy\right)^2+\left(cz\right)^2\)     (*)

VP=\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)+\left(bz-cy\right)^2+\left(cx-az\right)^2+\left(ay-bx\right)^2\)

=\(\: \left(ax\right)^2+\left(by\right)^2+\left(cz\right)^2+2\left(axby+bycz+czax\right)+\left(bz\right)^2+\left(cy\right)^2+\left(cx\right)^2+\left(az\right)^2\)

\(+\left(ay\right)^2+\left(bx\right)^2-2\left(bzcy+cxaz+aybx\right)\)   (**)

Từ (*),(**)=> VT-VP=0=> VT=VP=> \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+x^2\right).\)=\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)+\left(bz-cy\right)^2+\left(cx-az\right)^2+\left(ay-bx\right)^2\)   (đpcm)

18 tháng 8 2017

2) áp dụng BĐT Schwartz ta có: 

\(\left(a+b+c\right)^2\le\left(1+1+1\right)\left(a^2+b^2+c^2\right)\)

=>\(2010^2\le3\left(a^2+b^2+c^2\right)\)  (vì a+b+c=2010)

=>\(a^2+b^2+c^2\ge\frac{2010^2}{3}=1346700\)

Dấu '=' xảy ra khi: a=b=c

Vậy GTNN của a^2 +b^2 +c^2 là 1346700 khi a=b=c

30 tháng 10 2019

1)

Ta có : a^3+b^3+c^3=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)+3.a.b.c=3.a.b.c

=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)=0

Ta thấy:a,b,c là số dương nên a+b+c khác 0 suy ra (a^2+b^2+c^2-a.b-b.c-a.c) =0 nên a=b=c

Vậy a=b=c

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bài 2:

Từ $xyz=1$ suy ra:

\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=yz+xz+xy\)

\(\Leftrightarrow xy+yz+xz-x-y-z=0\)

\(\Leftrightarrow (xy-x-y+1)+yz+xz-z-1=0\)

\(\Leftrightarrow (x-1)(y-1)+yz+xz-z-xyz=0\)

\(\Leftrightarrow (x-1)(y-1)+z(y-1)-xz(y-1)=0\)

\(\Leftrightarrow (y-1)(x-1+z-xz)=0\)

\(\Leftrightarrow (y-1)[(x-1)-z(x-1)]=0\Leftrightarrow (y-1)(x-1)(1-z)=0\)

\(\Rightarrow \left[\begin{matrix} x=1\\ y=1\\ z=1\end{matrix}\right.\)

Nếu $x=1\Rightarrow yz=1$

$A=x^{2018}+2019^y-z^x=1+2019^y-z=1+2019^y-\frac{1}{y}$

Nếu $y=1\Rightarrow xz=1$

$A=x^{2018}+2019-z^x=x^{2018}+2019-\frac{1}{x^x}$

Nếu $z=1\Rightarrow xy=1$

$A=\frac{1}{y^{2018}}+2019^y-1$

Tóm lại với đkđb vẫn chưa tính được giá trị cụ thể của $A$

24 tháng 9 2019

Bình phương ba vế suy ra \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Sau đó chứng minh tương tự bunhiacopxki

31 tháng 7 2017

đây là BĐT Bu-nhi-a-cốp-xki mà. chỉ cần nhân ra r đưa về hằng đẳng thức là đc

31 tháng 7 2017

giai ho minh di

6 tháng 8 2017

Theo BĐT Bunhia ta có  (a^2+b^2+c^2) (x^2+y^2+z^2) >_ (ax + by + cz)^2 a/x = b/y + c/z

suy ra a/x=b/y=c/z

6 tháng 8 2017

bạn có thể cm HỘ MÌNH bdt bUNHIA ĐC KO AK

2 tháng 11 2016

làm giúp tui vs mn oi

1 tháng 5 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

26 tháng 7

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ