Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a22=a1 . a2 ; a32=a2 . a4
=> \(\frac{a_1}{a_2}=\frac{a_2}{a_3};\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
=> \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)= \(\frac{a_1+a_2+a_3}{a_2+a_3+a_4}\)
=> \(\frac{a1^3+a2^3+a3^3}{a2^3+a3^3+a4^3}=\frac{a1.a2.a3}{a2.a3.a4}=\frac{a1}{a4}\)
a) \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\cdot\cdot\cdot\left(\frac{1}{2012^2}-1\right)\)(có 1006 số hạng nên tích của A là số dương)
\(\Rightarrow A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdot\cdot\cdot\left(1-\frac{1}{2012^2}\right)\)
\(\Rightarrow A=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\cdot\cdot\cdot\left(\frac{2012^2-1}{2012^2}\right)\)
\(\Rightarrow A=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\cdot\cdot\frac{2011\cdot2013}{2012^2}\)
\(\Rightarrow A=\text{}\frac{2013}{2\cdot2012}=\frac{2013}{4024}\)
Giải:
Đặt c1=a1−b1;c2=a2−b2;...;c5=a5−b5
Xét tổng c1+c2+c3+...+c5 ta có:
c1+c2+c3+...+c5
=(a1−b1)+(a2−b2)+...+(a5−b5)
=0
⇒c1;c2;c3;c4;c5 phải có một số chẵn
⇒c1.c2.c3.c4.c5⋮2
Vậy (a1−b1)(a2−b2)(a3−b3)...(a5−b5)⋮2 (Đpcm)
Phần a:Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a1}{a2}=\frac{a2}{a3}=...=\frac{a8}{a9}=\frac{a9}{a1}=\frac{a1+a2+...+a9}{a2+a3+...+a1}=1\)
=>Tử số = mẫu số.
Phần b:Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c+a-b+c}{a+b-c+a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2a+2c}{2a-2c}=\frac{a+c}{a-c}=\frac{2b}{2b}=1\)
=>a+c=a-c
<=>2c=0
<=>c=0.
Đặt c1=a1−b1;c2=a2−b2;...;c5=a5−b5c1=a1−b1;c2=a2−b2;...;c5=a5−b5
Xét tổng c1+c2+c3+...+c5c1+c2+c3+...+c5 ta có:
c1+c2+c3+...+c5c1+c2+c3+...+c5
=(a1−b1)+(a2−b2)+...+(a5−b5)=(a1−b1)+(a2−b2)+...+(a5−b5)
=0=0
⇒c1;c2;c3;c4;c5⇒c1;c2;c3;c4;c5 phải có một số chẵn
⇒c1.c2.c3.c4.c5⋮2⇒c1.c2.c3.c4.c5⋮2
Vậy (a1−b1)(a2−b2)(a3−b3)...(a5−b5)⋮2(a1−b1)(a2−b2)(a3−b3)...(a5−b5)⋮2 (Đpcm)
Theo đề bài \(a_2^2=a_1a_3\) và \(a_3^2=a_2a_4\) do đó \(\frac{a_1}{a_2}=\frac{a_2}{a_3}\) và \(\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
hay \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\), suy ra \(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}\cdot\frac{a_2}{a_3}\cdot\frac{a_3}{a_4}=\frac{a_1}{a_4}\left(1\right)\)
Mặt khác \(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(2\right)\)
Từ (1) và (2) ta có điều phải chứng minh
Ta có: a22=a1a3 và a32=a2a4
=>\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
=>\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}=\frac{a_1}{a_4}\)
Lại có:\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)
=>\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)
Vậy:\(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)
Rất mún nhưng mk mệt lắm.Đánh máy một nửa rồi xong lại mỏi thế thôi
Ta có
\(\hept{\begin{cases}a_2^2=a_1.a_3\\a_3^2=a_2.a_4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a_1}{a_2}=\frac{a_2}{a_3}\\\frac{a_2}{a_3}=\frac{a_3}{a_4}\end{cases}}}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(1\right)\)
Ta lại có
\(\frac{a_2^2}{a_3^2}=\frac{a_1.a_3}{a_2.a_4}\)
\(\frac{a_2^3}{a_3^3}=\frac{a_1}{a_4}\left(2\right)\)
Từ (1) và (2)
\(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)
http://h.vn/hoi-dap/question/157445.html