Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{d}=1\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=d\end{cases}\Rightarrow}a=b=c=d\left(đpcm\right)}\)
Câu còn lại ? đề luôn
\(\frac{b+c}{4}=a\) => 4a = b + c => c = 4a - b (1)
\(\frac{a+c}{2}=b\) => 2b = a + c => c = 2b - a (2)
Lại có: a + b - 1 = c (3)
Từ (1); (2) => c = 4a - b = 2b - a
=> 4a + a = 2b + b
=> 5a = 3b
=> \(a=\frac{3}{5}b\)
Thay \(a=\frac{3}{5}b\) vào (1), (2) và (3) ta có:
=> \(c=4.\frac{3}{5}.b-b=2b-\frac{3}{5}b=\frac{3}{5}b+b-1\)
=> \(c=\frac{12}{5}b-b=\frac{7}{5}b=\frac{8}{5}b-1\)
=> \(c=\frac{7}{5}b=\frac{8}{5}b-1\)
=> \(\frac{8}{5}b-1-\frac{7}{5}b=0\)
=> \(\frac{1}{5}b-1=0\)
=> \(\frac{1}{5}b=1\) => \(b=5\)
=> \(a=\frac{3}{5}.5=3\) và \(c=\frac{7}{5}.5=7\)
Vậy abc = 357
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(c+a\right)+\left(a+b\right)}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\frac{b+c}{a}=2\Rightarrow b+c=2a\)( 1 )
\(\frac{c+a}{b}=2\Rightarrow c+a=2b\)( 2 )
\(\frac{a+b}{c}=2\Rightarrow a+b=2c\)( 3 )
Từ ( 1 ),(2) và ( 3 ) \(\Rightarrow a=b=c\)