Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 4 số phải tìm là a, b, c, d.
Theo bài ra, ta có : \(a+b+c+d=45;a+2=b-2=c.2=d:2\)
\(\Rightarrow\frac{a+2}{2}=\frac{b-2}{2}=\frac{c}{1}=\frac{d}{4}=k\)
\(\Rightarrow k=\frac{\left(a+2\right)+\left(b-2\right)+c+d}{2+2+1+4}\)
\(=\frac{a+b+c+d}{9}=\frac{45}{9}=5\)
Do đó : \(\frac{a+2}{2}=5\Rightarrow a+2=10\Rightarrow a=8\)
\(\frac{b-2}{2}=5\Rightarrow b-2=10\Rightarrow b=12\)
\(c=5\)
\(\frac{d}{4}=5\Rightarrow d=20\)
Vậy 4 số đó là : \(8;12;5;20\)
Gọi ST1,ST2,ST3 và ST4 lần lượt là a,b,c,d
Theo bài ra, ta có:
a+2 = b-2 = 2c =1/2 d
Suy ra: a=1/2 d -2
b=1/2 d +2
c= 1/4 d
Mặt khác,ta lại có:
a+b+c+d=45
1/2 d -2 +1/2 d + 2 +1/4 d+ d =45
9/4 d=45
d=20
Do đó: a= 1/2 .20 -2 =8
b= 1/2 .20+2 =12
c= 1/4 .20 =5
Vậy ST1 là 8, ST2 là 12, ST3 là 5 và ST4 là 20
Gọi ba số là a,b,c
Theo đề, ta có: 3a=4b=5c
=>a/20=b/15=c/12
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{20}=\dfrac{b}{15}=\dfrac{c}{12}=\dfrac{a+b+c}{20+15+12}=\dfrac{321.95}{47}=6.85\)
=>c=82,2
Gọi 3 số đó lân lượt là: a;b;c
Theo đầu bài ta có:
\(4a=5b\Leftrightarrow\frac{a}{5}=\frac{b}{4}=\frac{a+b}{5+4}=\frac{9c}{9}=c\)
(Áp dụng tính chất dãy tỉ số bằng nhau)
\(\Leftrightarrow\hept{\begin{cases}a=5c\\b=4c\end{cases}}\)
\(\Rightarrow a+b+c=150\)
\(\Leftrightarrow5c+4c+c=150\Leftrightarrow10c=150\Rightarrow c=15\)
Vậy\(\hept{\begin{cases}a=5\cdot15=75\\b=4\cdot15=60\end{cases}}\)
Vậy 3 số cần tìm lần lượt là 75;60;15
Số vải tấm thứ nhất còn lại
1-2/3=1/3 tấm thứ nhất
Số vải tấm thứ hai còn lại
1-3/4=1/4 tấm thứ hai
Số vải tấm thứ nhất còn lại
1-4/5=1/5 tấm thứ 3
Theo đề bài 1/3 tấm thứ nhất = 1/4 tấm thứ hai = 1/5 tấm thứ 3
=> tấm thứ nhất : Tấm thứ hai : tấm thứ ba = 3:4:5
Chiều dài tấm 1 = 132:(3+4+5)x3=33 m
Chiều dài tấm 2 = 132:(3+4+5)x4=44 m
Chiều dài tấm 3 = 132:(3+4+5)x5=55 m
Gọi chiều dài tấm vải thứ nhất, thứ hai, thứ ba lần lượt là a;b;c (m) (a,b,c>0)
Theo đề ra ta có: \(a-\frac{2}{3}a=b-\frac{3}{4}b=c-\frac{4}{5}c\)
\(\Rightarrow\frac{1}{3}a=\frac{1}{4}b=\frac{1}{5}c\)
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Vì 3 tấm dài tổng cộng 132 m \(\Rightarrow a+b+c=132\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{132}{12}=11\)
\(\Rightarrow\hept{\begin{cases}a=11\cdot3=33\\b=11\cdot4=44\\c=11\cdot5=55\end{cases}}\)
Vậy: tấm thứ nhất dài 33m; tấm thứ hai dài 44m; tấm thứ ba dài 55m.
Với một bài toán lớp 7 bạn nên làm tính chất dãy tỉ số bằng nhau nhé Minh! ^_^
gọi các tấm vải tứ tự là x,y,z
khi bán đi mỗi tấm còn lại ta có dãy số bằng nhau
x/2=y/3=z/4 => x/2+y/3+z/4 = 108/9 = 12
x= 12.2=24m
y=12.3=36m
z=12.4=48m
- Gọi chiều dài ba tấm vải lần lượt là a;b;c(m; a;b;c\(\in\) N*)
- Theo đề bài ta có:
+ Sau khi bán \(\frac{1}{2}\)tấm thứ nhất thì tấm thứ nhất còn lại: \(a-a.\frac{1}{2}=a.\frac{1}{2}=\frac{a}{2}\)(1)
+ Sau khi bán \(\frac{2}{3}\)tấm thứ hai thì tấm thứ hai còn lại: \(b-b.\frac{2}{3}=b.\frac{1}{3}=\frac{b}{3}\)(2)
+ Sau khi bán \(\frac{3}{4}\)tấm vải thứ ba thì tấm thứ ba còn lại: \(c-c.\frac{3}{4}=c.\frac{1}{4}=\frac{c}{4}\)(3)
Mà lúc đó số mét vải còn lại ở ba tấm bằng nhau \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
+ Ba tấm vải dài tổng cộng 108m \(\Rightarrow\) \(a+b+c=108\left(m\right)\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)
\(\Rightarrow a=12.2=24\left(m\right)\) ; \(b=12.3=36\left(m\right)\); \(c=12.4=48\left(m\right)\)
Vậy