Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}\)
TH1: \(a+b+c+d=0\)
\(\Rightarrow\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{-c}{c}=-1\)
TH2: \(a+b+c+d\ne0\)
\(\Rightarrow\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
Ta có : \(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\)
*Nếu \(a+b+c\ne0\) \(\Rightarrow\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)*Nếu \(\) \(a+b+c=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-c\end{matrix}\right.\)\(\)
\(\Rightarrow\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a}{-a}=\dfrac{b}{-b}=\dfrac{c}{-c}=-1\)
Vậy \(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{1}{2}\) hay\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=-1\)
Theo tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{1}{2}\)
Vậy giá trị mỗi tỉ số trên là : \(\dfrac{1}{2}\)
Đề bài \(S=\dfrac{a+b}{2c}+\dfrac{b+c}{3a}+\dfrac{c+a}{4b}\) đúng hơn chứ nhỉ?
a+b+c=0\(\Rightarrow c=0-a-b\)
Thay vào tỉ số đầu tiên ta được
\(\dfrac{a}{b+c}=\dfrac{a}{b+0-a-b}=\dfrac{a}{-a}=-1\)
Mà \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)
\(\Rightarrow\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=-1\)
Chúc bạn học tốt
Ta có:
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
⇔ \(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1\)
\(=\dfrac{a+b+c+2d}{d}-1\)
⇔ \(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
Nếu a+b+c+d=0
⇒a+b=−(c+d);c+b=−(a+d);c+d=−(a+b);a+d=−(c+b)
Thay vào M, ta có:
\(M=\dfrac{a+b}{-\left(a+b\right)}=\dfrac{b+c}{-\left(b+c\right)}=\dfrac{c+d}{-\left(c+d\right)}=\dfrac{a+d}{-\left(a+d\right)}=-1\)
Nếu a+b+c+d ≠0
⇒ \(a=b=c=d\)
Thay vào M, ta có
\(M=\dfrac{a+b}{a+b}=\dfrac{b+c}{b+c}=\dfrac{c+d}{c+d}=\dfrac{d+a}{d+a}=1\)
Lời giải:
$\frac{2022a+b+c}{a}=\frac{a+2022b+c}{b}=\frac{a+b+2022c}{c}$
$=2021+\frac{a+b+c}{a}=2021+\frac{a+b+c}{b}=2021+\frac{a+b+c}{c}$
$\Rightarrow \frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}$
$\Rightarrow a+b+c=0$ hoặc $\frac{1}{a}=\frac{1}{b}=\frac{1}{c}$
$\Rightarrow a+b+c=0$ hoặc $a=b=c$
Nếu $a+b+c=0$ thì:
$P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}=\frac{(-c)}{c}+\frac{(-b)}{b}+\frac{(-a)}{a}=-1+(-1)+(-1)=-3$
Nếu $a=b=c$ thì:
$P=\frac{c+c}{c}+\frac{a+a}{a}+\frac{b+b}{b}=2+2+2=6$
sửa lại đề bài nhé
tìm x ,biết
\(x=\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\)
+ nếu a+b+c=0
\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{c}{a+b}\\\dfrac{a}{b+c}\\\dfrac{b}{c+a}\end{matrix}\right.\Rightarrow x=-1\)
nếu a+b+c \(\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(x=\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
nếu nếu a+b+c \(\ne0\)
thì x=\(\dfrac{1}{2}\)
nếu nếu a+b+c =0
thì x= -1
x là giá trị của mỗi tỉ số nhé
\(\ne0\)\(\ne0\)