Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=t=\frac{x-z}{1998-2000}=\frac{x-y}{1998-1999}=\frac{y-z}{1999-2000}.\)
Hay: \(\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\Rightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)(1)
a) \(\left(x-z\right)^3=\left(x-z\right)^2\left(x-z\right)=\left(2\left(x-y\right)\right)^2\left(2\left(y-z\right)\right)\)
\(\Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)ĐPCM a)
b) Từ (1) => x + z = 2y
Để \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{z+x}{\frac{1}{3}}\)
Từ \(\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{x+y+y+z}{\frac{1}{2}+\frac{1}{5}}=\frac{4y}{\frac{7}{10}}=\frac{2y}{\frac{1}{3}}\)
=>y=0 =>x=0 => z=0 Suy ra hệ thức: x-y/4=y-z/5 luôn đúng. ĐPCM
\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}\)
\(\Rightarrow\frac{x-z}{1998-2000}=\frac{x-y}{1998-1999}=\frac{y-z}{1999-2000}\)
\(\Rightarrow\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\)
\(\Rightarrow\left(\frac{x-z}{-2}\right)^3=\left(\frac{x-y}{-1}\right)^2.\left(\frac{y-z}{-1}\right)\)
\(\Rightarrow\frac{\left(x-z\right)^3}{\left(-2\right)^3}=\frac{\left(x-y\right)^2}{\left(-1\right)^2}.\frac{\left(y-z\right)}{-1}\)
\(\Rightarrow\left(x-z\right)^3=8.\left(x-y\right)^2.\left(y-z\right)\)
ĐẶT\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=k\Rightarrow x=1998k,y=1999k,z=2000k\)
\(\Rightarrow\left(x-z\right)^3=\left(1998k-2000k\right)^3=\left(-2k\right)^3=-8k^3\)
\(8.\left(x-y\right)^2.\left(y-z\right)=8.\left(1998k-1999k\right)^2.\left(1999k-2000k\right)=-8k^3\)
=> đpcm
<br class="Apple-interchange-newline"><div id="inner-editor"></div>x−z−2 =x−y−1 =y−z−1 ⇒x−z=2(x−y)=2(y−z)(1)
a) (x−z)3=(x−z)2(x−z)=(2(x−y))2(2(y−z))
⇔(x−z)3=8(x−y)2(y−z)ĐPCM a)
bn vào đây thử nhé!! Câu hỏi của Hoàng Lan Hương - Toán lớp 7 - Học toán với OnlineMath
5757547457484457485323322146787970678545745645
tôi đã thử lòng các bạn nhưng ko có ai trả lời thì tớ giải cho nhé.
bài làm: Đặt \(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=k\Rightarrow\)x =1998k ; y =1999k ; z =2000k
ta có : \(\left(x-z\right)^3=\left(1999k-2000k\right)^3\) = \(\left[k\cdot\left(1999-2000\right)\right]^3\)= \(k^3\cdot\left(-8\right)\) (1)
\(8\cdot\left(x-y\right)^2\cdot\left(y-z\right)\) = \(8\cdot\left(1998k-1999k\right)^2\cdot\left(1999k-2000k\right)\)
= \(8\cdot\left[k\cdot\left(1999-2000\right)\right]^2\cdot\left[k\cdot\left(1999-2000\right)\right]\)
= \(8\cdot k^2\cdot1\cdot k\cdot\left(-1\right)=k^3\cdot\left(-8\right)\) (2)
từ (1)và (2) \(\Rightarrow\left(x-z\right)^3=8\cdot\left(x-y\right)^2\cdot\left(y-z\right)\)
mik ko bits