K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

áp dụng tính chất của dãy tỉ số = nhau

giải ra thj dài lém

4 tháng 1 2016

8
P/s: Tui thi ròi và đ/á này đúng nha

Bài làm

Vì 3x = 2y

=> \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\)   (1)

Vì 7y = 5z

=> \(\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{21}=\frac{z}{15}\)      (2)

Từ (1) và (2) => \(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}\)

Theo tính chất dãy tỉ số bằng nhau

Ta có: \(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}=\frac{x-y+z}{14-21+15}=\frac{32}{8}=4\)

Do đó: \(\hept{\begin{cases}\frac{x}{14}=4\\\frac{y}{21}=4\\\frac{z}{15}=4\end{cases}}\Rightarrow\hept{\begin{cases}x=56\\y=84\\z=60\end{cases}}\)

Vậy  x = 56

        y = 84

        z = 60

# Chúc bạn học tốt #

12 tháng 7 2016

\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{10}=\frac{y}{15}\)

\(7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{26}=\frac{16}{13}=\frac{x+y-z}{10+15-21}\)

\(\Rightarrow x+y-z=\frac{16}{13}\cdot4=\frac{64}{13}\)

Theo bài ra ta có: x + z - y = 32

\(\Rightarrow\hept{\begin{cases}3x=2y\Rightarrow21x=14y\\7y=5z\Rightarrow14y=10z\end{cases}\Rightarrow21x=14y=10z}\)\(\Rightarrow\frac{x}{\frac{1}{21}}=\frac{y}{\frac{1}{14}}=\frac{z}{\frac{1}{10}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{\frac{1}{21}}=\frac{y}{\frac{1}{14}}=\frac{z}{\frac{1}{10}}=\frac{x+z-y}{\frac{1}{21}+\frac{1}{10}-\frac{1}{14}}=\frac{32}{\frac{8}{105}}=420\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{21}}=420\Rightarrow x=420\cdot\frac{1}{21}=20\\\frac{y}{\frac{1}{14}}=420\Rightarrow y=420\cdot\frac{1}{14}=30\\\frac{z}{\frac{1}{10}}=420\Rightarrow z=420\cdot\frac{1}{10}=42\end{cases}}\)

=> x + y - z = 20 + 30 - 42 = 8

6 tháng 8 2016

Hinh như sai đề rồi pn ạ chứ tính ra 32 ko chia hết cho 17

22 tháng 6 2015

Ta có \(3x=2y\) \(\Rightarrow3x\times\frac{7}{2}=2y\times\frac{7}{2}\) \(\Rightarrow\frac{21}{2}x=7y\)

\(\Rightarrow\frac{21}{2}x=7y=5z\)

\(\Rightarrow\frac{x}{\frac{2}{21}}=\frac{y}{\frac{1}{7}}=\frac{z}{\frac{1}{5}}=\frac{x-y+z}{\frac{2}{21}-\frac{1}{7}+\frac{1}{5}}=\frac{32}{\frac{16}{105}}=210\) (tính chất dãy các tỉ số bằng nhau)

\(\Rightarrow\frac{x}{\frac{2}{21}}=210\Rightarrow x=210\times\frac{2}{21}=20\)

và \(\frac{y}{\frac{1}{7}}=210\Rightarrow y=210\times\frac{1}{7}=30\)

và \(\frac{z}{\frac{1}{5}}=210\Rightarrow z=210\times\frac{1}{5}=42\)

2 tháng 6 2017

42 nha bn

21 tháng 10 2020

a) Vì \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

        \(3y=7z\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{14}=\frac{z}{6}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\) và x+y-z=58

APa dụng TC dãy TSBN ta có

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)

\(\Rightarrow x=42;y=28;z=12\)

Các câu còn lại tương tự

8 tháng 11 2016

a) Theo bài ra , ta có : x : y : z = 3 : 5 : ( -2 )

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) => \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\) và 5x - y + 3z = -16

Áp dụng t/c của dãy tỉ số = nhau , ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{-4}=4\)

\(\frac{x}{3}=4\Rightarrow x=4.3=12\\ \frac{y}{5}=4\Rightarrow y=4.5=20\\ \frac{z}{-2}=4\Rightarrow z=-2.4=-8\)

Vậy x = 12 ; y = 20 ; z = -8

 

8 tháng 11 2016

a) Ta có : x : y : z = 3 : 5 : (-2) \(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+-6}=-\frac{16}{4}=-4\)

\(\Rightarrow\begin{cases}\frac{5x}{15}=4\\\frac{y}{5}=4\\\frac{3z}{-6}=4\end{cases}\Rightarrow\begin{cases}5x=4.15\\y=4.5\\3z=4.\left(-6\right)\end{cases}\Rightarrow\begin{cases}5x=60\\y=20\\3z=-24\end{cases}\Rightarrow\begin{cases}x=12\\y=20\\z=-8\end{cases}\)

b) 2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\) (1)

5y = 7z \(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5x}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\begin{cases}\frac{3x}{63}=2\\\frac{7y}{98}=2\\\frac{5z}{50}=2\end{cases}\Rightarrow\begin{cases}3x=2.63\\7y=2.98\\5z=2.50\end{cases}\Rightarrow\begin{cases}3x=126\\7y=196\\5z=100\end{cases}\Rightarrow\begin{cases}x=42\\y=28\\z=20\end{cases}\)

c) x : y : z = 4 : 5 : 6 \(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

\(\Rightarrow\begin{cases}x^2=9.16\\2y^2=9.50\\z^2=9.36\end{cases}\Rightarrow\begin{cases}x^2=144\\y^2=450\div2=225\\z^2=324\end{cases}\Rightarrow\begin{cases}x=\pm12\\y=\pm15\\z=\pm18\end{cases}\)

Vậy x = 12 ; y = 15 ; z = 18

hoặc x = -12 ; y = -15 ; z = -18

28 tháng 8 2015

3x = 2y ;  7y = 5z

=>x/2=y/3;y/5=z/7

=>x/10=y/15;y/15=z/21

=>x/10=y/15=z/21

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x/10=y/15=z/21=x-y+z/10-15+21=32/16=2

suy ra x/10=2 => x=20

y/15=2 =>y=30

z/21=2 => z=42