Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a là bội của b
=> a chia hết cho b
=> a = bk
Mà b chia hết cho c
=> b = cq
=> a = bk = cq.k chia hết cho c
=> a chia hết cho c
=> a là bội của c
=> Đpcm
Có a là bội của b, b là bội của c
=> \(a⋮b\)và \(b⋮c\)
=> \(a⋮b⋮c\)
=> \(a⋮c\)
=> a là bội của c
Có a là bội của b =>a\(⋮\)b ( dấu \(⋮\)là chia hết nha )
Có b là bội của c =>b\(⋮\)c
Có a\(⋮\)b ,b\(⋮\)c =>a\(⋮\)c
=> a là bội của c
a vừa là ước vừa là bội của b thì chắc chắn |a|=b hay a=b hoặc a=-b
có thể chứng minh đơn giản như sau: giả sử a= bx và b=ay ( với x ; y là 2 số nguyên)
thế b=ay vào a=bx ta được: a= axy => xy=1 vì x và y nguyên nên
x=1 và y=1 hoặc x=-1 và y=-1 thay x và y vào điều giả sử ta được a=b hoặc a=-b
Theo bài ta có :
\(a\) là \(B\left(b\right)\) \(\Leftrightarrow a=b.q\left(q\in Z\right)\left(1\right)\)
\(b\) là \(B\left(c\right)\) \(\Leftrightarrow b=c.q_1\left(q_1\in N\right)\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta có :
\(a=c.q.q_1\)
\(\Leftrightarrow a⋮c\)
\(\Leftrightarrow a\) là \(B\left(c\right)\)
\(\Leftrightarrowđpcm\)
Giả sử: \(a\ge b\)thì
a là bội của b nên a =b.k (k\(\in\)Z, k \(\ne\)0)
b là bội của a nên b = a.q (q\(\in\)Z, q \(\ne\)0, \(q\ge k\))
Thay b = a.q thì:
a = b.k = a.q.k
\(\Rightarrow q.k=1\)
\(\Rightarrow k\inƯ\left(1\right)\left(k,q\in Z;k,q\ne0\right)\)
Mà \(q\ge k\)
\(\Rightarrow k=1,q=-1;k=q=1\)
Nếu q = 1; k= -1 thì b.k = b.(-1) = -b
Nếu q = 1; k= 1 thì b.k = b.1 = b,đpcm
Vì a là bội của b nên ta có: a=m.b (m thuộc Z) (1)
vì b là bội của a nên ta có: b=n.a (n thuộc Z) (2)
Kết hợp (1), (2) ta được:
a/m=n,a
\(\Leftrightarrow\)1/m=n mà n thuộc Z do đó suy ra m=1 hoặc m= -1
Vậy: +) Khi m=1 ta được a=b
+) Khi m= -1 ta được a= -b
ta co vi a la boi b =) a=kb(1)
vi b la boi cua a =) b=za(2)
thay(2) vao (1) ta dc
a=kb =) a=kza =) kz=1 (3)
Tu (1),(2) va (3) =) a=b nhe ^^
a là bội của b => a = b.q ( q là số tự nhiên khác 0) (1)
b là bôị của c => b = c.t ( t là số tự nhiên khác 0) (2)
Thay (2) vào (1) ta có: a = c.t.q => a chia hết cho c
=> a là bội của c (đpcm)
Theo đề bài
a=m.b (m là số nguyên)
b=n.c (n số nguyên)
=> a=m.n.c
Do m,n là số nguyên => m.n là số nguyên => a là bội của c