K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 6 2020

Với \(a;b>0\) ta luôn có: \(\frac{a^3+b^3}{a^2+b^2}\ge\frac{a+b}{2}\)

Thật vậy, BĐT tương đương:

\(2\left(a^3+b^3\right)\ge\left(a^2+b^2\right)\left(a+b\right)\)

\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Áp dụng vào bài toán:

\(P=\frac{x^3+y^3}{x^2+y^2}+\frac{y^3+z^3}{y^2+z^2}+\frac{z^3+x^3}{z^2+x^2}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z\ge6\)

\(\Rightarrow P_{min}=6\) khi \(x=y=z=2\)

4 tháng 7 2020

Thanks bạn nha.

30 tháng 5 2020

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

5 tháng 11 2019

\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(y^2+1\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\ge x+1-\frac{xy+y}{2}\)

Tương tự ta có:

\(\frac{y+1}{z^2+1}\ge y+1-\frac{yz+z}{2}\)

\(\frac{z+1}{1+x^2}\ge z+1-\frac{zx+x}{2}\)

Cộng vế theo vế ta có:

\(Q\ge3+\left(x+y+z\right)-\frac{x+y+z+xy+yz+zx}{2}\)

\(=3+\frac{x+y+z-xy-yz-zx}{2}\)

Có BĐT phụ sau:

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ( tự cm )

\(\Rightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=3\)

Khi đó \(P\ge3\)

Dấu "=" xảy ra tại \(x=y=z=1\)

29 tháng 2 2020

Áp dụng BĐT Bunhiacopski ta có:

\(\frac{x}{x^3+y^2+z}=\frac{x\left(\frac{1}{x}+1+z\right)}{\left(x^3+y^2+z\right)\left(\frac{1}{x}+1+z\right)}\le\frac{1+x+xz}{\left(x+y+z\right)^2}=\frac{1+x+xz}{9}\)

Tương tự rồi cộng lại ta được:

\(T\le\frac{3+x+y+z+xy+yz+zx}{9}=\frac{6+xy+yz+zx}{9}\le\frac{6+\frac{\left(x+y+z\right)^2}{3}}{9}=1\)

Dấu "=" xảy ra tại \(x=y=z=1\)

9 tháng 2 2019

Ta có: \(\frac{x+1}{y^2+1}=\left(x+1\right).\frac{1}{y^2+1}=\left(x+1\right)\left(1-\frac{y^2}{y^2+1}\right)\)

\(\ge\left(x+1\right)\left(1-\frac{y^2}{2y}\right)=x+1-\frac{y\left(x+1\right)}{2}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế:

\(P\ge\left(x+y+z+3\right)-\frac{x\left(z+1\right)+y\left(x+1\right)+z\left(y+1\right)}{2}\)

\(=6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\) (*)

Lại có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

Thật vậy,ta có: BĐT \(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

Thay vào (*),ta có: \(P\ge6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\)

\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}=6-\frac{3+3}{2}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=3\Leftrightarrow x=y=z=1\)

9 tháng 2 2019

Bài t đúng 100% nhá,đứa nào tk sai t nhở? ngon vô làm lại=)

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)