\(x^2+y^2+z^2\le9\)

tìm giá trị lớn nhất của A=x+y+z-(xy+xz+yz)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

\(xy+yz+zx=\frac{\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{2}\)

Đặt \(a=x+y+z\)

\(A=a-\frac{a^2-\left(x^2+y^2+z^2\right)}{2}=-\frac{1}{2}\left(a-1\right)^2+\frac{x^2+y^2+z^2}{2}+\frac{1}{2}\le\frac{9}{2}+\frac{1}{2}=5\)

Dấu bằng xảy ra khi \(\int^{x^2+y^2+z^2=9}_{x+y+z=1}\)

có rất nhiều bộ số thỏa hệ trên, ví dụ \(\left(x;y;z\right)=\left(1;\text{ }2;\text{ }-2\right)\)

Vậy Max A = 5

16 tháng 4 2016

bạn ấy ko biết thì bạn ấy hỏi sao câu lại chửi cậu ấy là ngu

16 tháng 4 2016

Ngu NGU NGU. Hà hà

4 tháng 10 2019

Áp dụng BĐT AM - GM ta có :

\(P=\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\)

\(\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}\)

\(=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)

\(\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{xy+yz+xz}{xyz}\)

\(\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}\le\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)

Chúc bạn học tốt !!!

1 tháng 4 2019

*Max

Có: \(x^2+4\ge4x\)

        \(y^2+4\ge4y\)

      \(z^2+4\ge4z\)

\(\Rightarrow x^2+y^2+z^2+12\ge4\left(x+y+z\right)\)\(\Rightarrow x+y+z\le\frac{x^2+y^2+z^2+12}{4}\)

Lại có \(xy+yz+zx\le x^2+y^2+z^2\)(Auto chứng minh)


Cộng 2 vế của bdtd lại ta đc \(x+y+z+xy+yz+zx\le\frac{5\left(x^2+y^2+z^2\right)+12}{4}\)

                                                                                                     \(=\frac{5.12+12}{4}=18\)

"=" KHI x = y= z = 2

*Min : ta có : \(12+2\left(xy+yz+zx\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

                                                                      \(=\left(x+y+z\right)^2\ge0\)

\(\Rightarrow xy+yz+zx\ge-6\)

Dấu "=" xảy ra <=> x + y + z = 0

Với các giá trị trên ta đc \(x+y+z+xy+yz+zx\ge0-6=-6\)

Dấu "=" <=> x + y + z = 0 và x+ y2 + z2 = 12

2 tháng 4 2019

bạn ơi mình giải thế này thì sao nhỉ:

đặt x+y+z=a=> \(a^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

=> \(xy+yz+zx=\frac{a^2-\left(x^2+y^2+z^2\right)}{2}\ge\frac{a^2-12}{2}\)

\(\Rightarrow P\ge a+\frac{a^2-12}{2}\ge-\frac{13}{2}\)( dùng hằng đẳng thức c/m)

dấu " =" <=> \(\hept{\begin{cases}x+y+z=-1\\x^2+y^2+z^2=12\end{cases}}\)

bạn xem thử hộ mik cái =)

23 tháng 8 2019

mong mọi người nhanh giúp

DD
14 tháng 7 2021

Ta có: \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)

\(\left(y-z\right)\ge0\Leftrightarrow y^2+z^2\ge2yz\)

\(\left(z-x\right)^2\ge0\Leftrightarrow z^2+x^2\ge2zx\)

\(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\)

\(\left(y-1\right)^2\ge0\Leftrightarrow y^2+1\ge2y\)

\(\left(z-1\right)^2\ge0\Leftrightarrow z^2+1\ge2z\)

Cộng lại vế với vế ta được: 

\(3\left(x^2+y^2+z^2\right)+3\ge2xy+2yz+2zx+2x+2y+2z\)

\(\Leftrightarrow Q\ge\frac{2\left(x+y+yz+xy+yz+zx\right)-3}{3}=3\)

Dấu \(=\)khi \(x=y=z=1\).

14 tháng 7 2021

Ta có: \(x+y+z+xy+yz+xz\le x+y+z+\frac{\left(x+y+z\right)^2}{3}\)

=> \(\left(x+y+z\right)^2+3\left(x+y+z\right)\ge3.6=18\)

<=> \(\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)

<=> \(\left(x+y+z-3\right)\left(x+y+z+6\right)\ge0\)

<=> \(x+y+z\ge3\)(vì x + y + z + 6 > 0 vì x,y,z > 0)

Do đó: \(Q=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{3^2}{3}=3\)

Dấu "=" xảy ra<=> x  = y= z và x + y + z = 3 <=> x = y = z = 1

Vậy MinQ = 3 <=> x = y= z = 1