K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

ta có:\(x^4-2y^2+1=y^4-2z^2+1=z^4-2x^2+1=0\)

\(\rightarrow x^4+y^4+z^4-2x^2-2y^2-2z^2+3=0\)

\(\Leftrightarrow\left(x^4-2x^2+1\right)+\left(y^4-2y^2+1\right)+\left(z^4-2x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)^2+\left(y^2-1\right)^2+\left(z^2-1\right)^2=0\)

\(\Leftrightarrow\left\{\begin{matrix}x^2=1\\y^2=1\\z^2=1\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=\pm1\\y=\pm1\\z=\pm1\end{matrix}\right.\)

từ đó tính được M (lưu ý thử từng trường hợp)

26 tháng 1 2017

thank you very muchhaha

23 tháng 6 2019

Áp dụng BĐT Cauchy-Schwarz , ta có : \(3.\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\), do đó : \(0\ge\left(x^2+y^2+z^2\right)^2-7\left(x^2+y^2+z^2\right)+12\)

\(\Rightarrow x^2+y^2+z^2\ge3\), áp dụng BĐT Cauchy-Schwarz , ta lại có :

\(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)

\(=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)

Tiếp tục sử dụng BĐT Cauchy-Schwarz và kết hợp BĐT quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\), ta có :

\(x^2y+y^2z+z^2x\le\sqrt{\left(x^2+y^2+z^2\right).\left(x^2y^2+y^2z^2+z^2x^2\right)}\)

                                  \(\le\sqrt{\left(x^2+y^2+z^2\right).\left(\frac{\left(x^2+y^2+z^2\right)^2}{3}\right)}\)

                                   \(=\left(x^2+y^2+z^2\right).\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

Tương tự , chứng minh đc :

\(2.\left(xy^2+yz^2+zx^2\right)\le2\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

\(\Rightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3.\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}}\)

          \(=\sqrt{\frac{x^2+y^2+z^2}{3}}\)

           \(\ge1\)

Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 nên giá trị nhỏ nhất của P là 1

NV
21 tháng 1 2021

1.

Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)

\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)

\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)

\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)

\(\Rightarrow n\) lẻ thì A không tối giản

\(\Rightarrow n\) chẵn thì A tối giản

NV
21 tháng 1 2021

2.

Giả thiết tương đương:

\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)

Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)

Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)

\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)

\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)

24 tháng 5 2019

Em không chắc đâu nha!

Từ đề bài suy ra \(0\le x;y;z\le1\Rightarrow x\left(1-x\right)\ge0\Rightarrow x\ge x^2\)

Tương tự với  y với z.Ta có:

\(P=\sqrt{x^2+x^2+x+1}+\sqrt{y^2+y^2+y+1}+\sqrt{z^2+z^2+z+1}\)

\(\le\sqrt{x^2+2x+1}+\sqrt{y^2+2y+1}+\sqrt{z^2+2z+1}\)

\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}\)

\(=\left|x+1\right|+\left|y+1\right|+\left|z+1\right|\)

\(=\left(x+y+z\right)+3=1+3=4\)

Dấu "=" xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó.

Vậy....

24 tháng 5 2019

Em sai chỗ nào xin các anh/ chị chỉ rõ ra giúp ạ, chứ tk sai mà không góp ý thế em cũng không biết đường nào mà tránh cái lỗi sai tương tự đâu ạ! Em cảm ơn.

16 tháng 12 2016

Ta có: 

\(2x^2+xy+2y^2=x^2+y^2+\frac{3}{4}\left(x+y\right)^2+\frac{1}{4}\left(x-y\right)^2\)

\(\ge\frac{2\left(x+y\right)^2}{4}+\frac{3\left(x+y\right)^2}{4}=\frac{5\left(x+y\right)^2}{4}\)

\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}\left(x+y\right)\). Tương tự ta có:

\(\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right);\sqrt{2z^2+xz+2x^2}\ge\frac{\sqrt{5}}{2}\left(x+z\right)\)

\(\Rightarrow M\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(x+z\right)\)

\(=\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

16 tháng 12 2016

Cho mình hối tại sao đẳng thức sảy ra x=y=z=1/3 vậy

16 tháng 6 2019

Ta có \(\left(2x^2+y^2+3\right)\left(2+1+3\right)\ge\left(2x+y+3\right)^2\)

=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{2x+y+3}\)

Mà \(\frac{1}{2x+y+3}=\frac{1}{x+x+y+1+1+1}\le\frac{1}{36}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+3\right)\)

=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{36}\left(\frac{2}{x}+\frac{1}{y}+3\right)\)

Khi đó 

\(P\le\frac{\sqrt{6}}{36}\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}+9\right)=\frac{\sqrt{6}}{36}.18=\frac{\sqrt{6}}{2}\)

Dấu bằng xảy ra khi x=y=z=1

Vậy \(MaxP=\frac{\sqrt{6}}{2}\)khi x=y=z=1

19 tháng 5 2020

dễ vãi mà ko giải đc NGU

16 tháng 6 2019

https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/

16 tháng 6 2019

bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo

8 tháng 11 2019

Trẻ con giờ ghê thật chưa gì đã dồn biến, khử lũy thừa rồi, có khi mình tiến hóa ko kịp mất xd

\(S=ab^2+bc^2+ca^2-abc\)

WLOG \(b=mid\left\{a,b,c\right\}\) khi đó \(S\le a^2b+bc^2+abc-abc=b\left(1-b^2\right)\)

\(=\sqrt{\frac{1}{2}\cdot\left(\frac{2b^2+1-b^2+1-b^2}{3}\right)^3}=\frac{2\sqrt{3}}{9}\)

Sau khi đã có kq \(\frac{2\sqrt{3}}{9}\)rồi ai có đam mê biến đổi có thể cm bdt sau, làm thành bổ đề về sau dùng \(\left(ab^2+bc^2+ca^2-abc\right)^2\le\frac{4}{27}\left(a^2+b^2+c^2\right)^3\)

WLOG \(a=min\left\{a,b,c\right\},b=a+u,c=a+v\) khi đó bdt cần cm tương đương 

\(-\left(v^2-2u^2\right)^2\left(u^2+4v^2\right)-.....\le0\) 

ngại viết quá nhưng đại ý là nó sẽ bé hơn hoặc bằng 0 sau đó lấy căn 2 vế ta cũng dc GTLN tương ứng 

8 tháng 11 2019

đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\) (a,b,c>0) 

bài toán trở thành: cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=1\)

Tìm max \(S=ab^2+bc^2+ca^2-abc\) ez :DDDD 

25 tháng 4 2020

Bài 1 : 

Ta có : 

\(x^7+\frac{1}{x^7}=\left(x^3+\frac{1}{x^3}\right)\left(x^4+\frac{1}{x^4}\right)-\left(x+\frac{1}{x}\right)\)

\(\left(x+\frac{1}{x}\right)=a\Leftrightarrow\left(x+\frac{1}{x}\right)^2=a^2\)

\(\Leftrightarrow x^2+\frac{1}{x^2}+2.x.\frac{1}{x}=a^2\)

\(\Leftrightarrow x^2+\frac{1}{x^2}=a^2-2\)

\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-x.\frac{1}{x}+\frac{1}{x^2}\right)\)

               \(=a\left(x^2+\frac{1}{x^2}-1\right)=a\left(a^2-3\right)\)

\(x^4+\frac{1}{x^4}=\left(x^2+\frac{1}{x^2}\right)^2-2.x^2.\frac{1}{x^2}\)

                   \(=\left(a^2-2\right)^2-2=a^4-4a^2+4-2\)

                                                               \(=a^4-4a^2+2\)

\(\Rightarrow x^7+\frac{1}{x^7}=a.\left(a^2-3\right).\left(a^4-4a^2+2\right)-a\)

                      \(=\left(a^3-3a\right)\left(a^4-4a^2+2\right)-a\)

                         \(=a^7-4a^5+2a^3-3a^5+12a^3-6a-a\)

                          \(=a^7-7a^5+14a^3-7a\)

25 tháng 4 2020

Bài 2 : 

Ta có : 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=2^2\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=\frac{2}{xy}-\frac{1}{z^2}\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{z^2}+\frac{2}{yz}+\frac{2}{zx}=0\)

\(\Rightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)

\(\Rightarrow\frac{1}{x}+\frac{1}{z}=\frac{1}{y}+\frac{1}{z}=0\) vì \(\left(\frac{1}{x}+\frac{1}{z}\right)^2,\left(\frac{1}{y}+\frac{1}{z}\right)^2\ge0\)

\(\Rightarrow x=y=-z\)

\(\Rightarrow\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2\Rightarrow-\frac{1}{z}=2\Rightarrow z=-\frac{1}{2}\)

\(\Rightarrow x=y=\frac{1}{2}\)

\(\Rightarrow x+2y+z=\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}=1\)

\(\Rightarrow P=1\)