Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em nghĩ nếu làm như Lê Hồ Trọng Tín thì dấu "=" không xảy ra -> sai nên em xin chia sẻ cách làm của mình.Mong được mọi người góp ý.
Theo BĐT AM-GM
\(\sqrt{2019x\left(y+2\right)}=\sqrt{673}.\sqrt{3.x\left(y+2\right)}\)
\(\le\frac{\sqrt{673}}{2}\left[3+x\left(y+2\right)\right]=\frac{\sqrt{673}}{2}\left(3+xy+2x\right)\)
Tương tự với hai BĐT còn lại và cộng theo vế ta được:
\(M\le\frac{\sqrt{673}}{2}\left[9+\left(xy+yz+zx\right)+2\left(x+y+z\right)\right]\)
\(\le\frac{\sqrt{673}}{2}\left[9+\frac{\left(x+y+z\right)^2}{3}+6\right]\le\frac{\sqrt{673}}{2}\left(9+3+6\right)=6=9\sqrt{673}\)
Dấu "=" xảy ra khi x =y = z =1
Vậy...
Theo BĐT AM-GM:
\(\sqrt{2019x\left(y+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019x+y+2)
\(\sqrt{2019y\left(z+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019y+z+2)
\(\sqrt{2019z\left(x+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019z+x+2)
=>M\(\le\)\(\frac{1}{2}\)[2019(x+y+z)+(x+y+z)+6]\(\le\)3033
Vậy MaxM=3033 <=>\(\hept{\begin{cases}2019x=y+2\\2019y=z+2\\2019z=x+2\end{cases}}\)
ta có:\(P=\sum\dfrac{y^2z^2}{x\left(y^2+z^2\right)}=\sum\dfrac{\dfrac{1}{x}}{\dfrac{1}{y^2}+\dfrac{1}{z^2}}\)
đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\)thì giả thiết trở thành : \(a^2+b^2+c^2=1\).tìm Min \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}\)
ta có:\(\dfrac{a}{b^2+c^2}=\dfrac{a}{1-a^2}=\dfrac{a^2}{a\left(1-a^2\right)}\)
Áp dụng bất đẳng thức cauchy:
\(\left[a\left(1-a^2\right)\right]^2=\dfrac{1}{2}.2a^2\left(1-a^2\right)\left(1-a^2\right)\le\dfrac{1}{54}\left(2a^2+1-a^2+1-a^2\right)^3=\dfrac{4}{27}\)
\(\Rightarrow a\left(1-a^2\right)\le\dfrac{2}{3\sqrt{3}}\)\(\Rightarrow\dfrac{a^2}{a\left(1-a^2\right)}\ge\dfrac{3\sqrt{3}}{2}a^2\)
tương tự với các phân thức còn lại ta có:
\(P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)
đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
hay \(x=y=z=\sqrt{3}\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\\\dfrac{1}{z}=c\end{matrix}\right.\) Thì bài toán trở thành
Cho \(a^2+b^2+c^2=1\) tính GTNN của \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{c^2+a^2}+\dfrac{c}{a^2+b^2}\)
Ta có:
\(a^2+b^2+c^2=1\)
\(\Rightarrow a^2+b^2=1-c^2\)
\(\Rightarrow\dfrac{c}{a^2+b^2}=\dfrac{c^2}{c\left(1-c^2\right)}\)
Mà ta có: \(2c^2\left(1-c^2\right)\left(1-c^2\right)\le\dfrac{\left(2c^2+1-c^2+1-c^2\right)^3}{27}=\dfrac{8}{27}\)
\(\Rightarrow c\left(1-c^2\right)\le\dfrac{2}{3\sqrt{3}}\)
\(\Rightarrow\dfrac{c^2}{c\left(1-c^2\right)}\ge\dfrac{3\sqrt{3}c^2}{2}\)
\(\Rightarrow\dfrac{c}{a^2+b^2}\ge\dfrac{3\sqrt{3}c^2}{2}\left(1\right)\)
Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{b}{c^2+a^2}\ge\dfrac{3\sqrt{3}b^2}{2}\left(2\right)\\\dfrac{a}{b^2+c^2}\ge\dfrac{3\sqrt{3}a^2}{2}\left(3\right)\end{matrix}\right.\)
Từ (1), (2), (3) \(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\) hay \(x=y=z=\sqrt{3}\)
bài này có lập được bảng biến thiên, nhưng chắc chưa học nên làm cách cơ bản
ta có \(\frac{x^2}{x^2+yz+x+1}\le\frac{x^2}{2x\sqrt{yz+1}+x}=\frac{x}{2\sqrt{yz+1}+1}\) dấu "=" xảy ra khi x2=yz+1
ta lại có \(2=x^2+y^2+z^2=\left(x+y+z\right)^3-2x\left(y+z\right)-2yz\ge\left(x+y+z\right)^3-\frac{\left(x+y+z\right)^2}{2}-2yz\)
\(\Rightarrow\left(x+y+z\right)^2\le4\left(1+yz\right)\Rightarrow x+y+z\le2\sqrt{1+yz}\)
\(\Rightarrow\frac{y+z}{x+y+z+1}=1-\frac{x+1}{x+y+z+1}\le1-\frac{x+1}{2\sqrt{yz+1}+1}\)
do đó \(P\le\frac{x}{2\sqrt{yz+1}+1}+1-\frac{x+1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}=1-\frac{1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}\)
\(\le1-\frac{1}{yz+1+1+1}-\frac{1+yz}{9}=\frac{11}{9}-\left(\frac{1}{yz+3}+\frac{yz+3}{9}\right)\le\frac{11}{9}-\frac{2}{3}=\frac{5}{9}\)
dấu "=" xảy ra khi \(\orbr{\begin{cases}x=1;y=1;z=0\\x=1;y=0;z=1\end{cases}}\)
Lời giải:
Xét hiệu:
\(\frac{x^4}{(x^2+y^2)(x+y)}+\frac{y^4}{(y^2+z^2)(y+z)}+\frac{z^4}{(z^2+x^2)(z+x)}-\left(\frac{y^4}{(x^2+y^2)(x+y)}+\frac{z^4}{(y^2+z^2)(y+z)}+\frac{x^4}{(z^2+x^2)(z+x)}\right)\)
\(=\frac{x^4-y^4}{(x^2+y^2)(x+y)}+\frac{y^4-z^4}{(y^2+z^2)(y+z)}+\frac{z^4-x^4}{(z^2+x^2)(z+x)}\)
\(=x-y+y-z+z-x=0\)
\(\Rightarrow \frac{x^4}{(x^2+y^2)(x+y)}+\frac{y^4}{(y^2+z^2)(y+z)}+\frac{z^4}{(z^2+x^2)(z+x)}=\frac{y^4}{(x^2+y^2)(x+y)}+\frac{z^4}{(y^2+z^2)(y+z)}+\frac{x^4}{(z^2+x^2)(z+x)}\)
Do đó:
\(2F=\frac{x^4+y^4}{(x^2+y^2)(x+y)}+\frac{y^4+z^4}{(y^2+z^2)(y+z)}+\frac{z^4+x^4}{(z^2+x^2)(z+x)}\)
\(\geq \frac{\frac{(x^2+y^2)^2}{2}}{(x^2+y^2)(x+y)}+\frac{\frac{(y^2+z^2)^2}{2}}{(y^2+z^2)(y+z)}+\frac{\frac{(z^2+x^2)^2}{2}}{(z^2+x^2)(z+x)}\) (áp dụng BĐT Cauchy)
hay \(2F\geq \frac{x^2+y^2}{2(x+y)}+\frac{y^2+z^2}{2(y+z)}+\frac{z^2+x^2}{2(z+x)}\)
Mà cũng theo BĐT Cauchy thì:
\(\frac{x^2+y^2}{2(x+y)}+\frac{y^2+z^2}{2(y+z)}+\frac{z^2+x^2}{2(z+x)}\geq \frac{\frac{(x+y)^2}{2}}{2(x+y)}+\frac{\frac{(y+z)^2}{2}}{2(y+z)}+\frac{\frac{(z+x)^2}{2}}{2(x+z)}=\frac{x+y+z}{2}=\frac{1}{2}\)
\(\Rightarrow 2F\geq \frac{1}{2}\Rightarrow F\geq \frac{1}{4}\)
Vậy \(F_{\min}=\frac{1}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
A = \(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2=\left(x^2+y^2\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\)
<=> 2A = \(2\left(x^2+y^2\right)+2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+8\)
Ta có \(2\left(x^2+y^2\right)=\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)(Bất đẳng thức Bunyakovsky) (1)
Áp dụng tương tự ta có
\(2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)=\left(1^2+1^2\right).\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
\(\ge\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\) (BĐT Bunyakovsky)
\(\ge\left(\dfrac{4}{x+y}\right)^2=\dfrac{16}{\left(x+y\right)^2}=16\) (BĐT Schwarz) (2)
Từ (1) và (2) ta có \(2A\ge1+16+8=25\Leftrightarrow A\ge\dfrac{25}{2}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{y}\\x=y\\x+y=1\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{2}\)
Vậy \(A_{min}=\dfrac{25}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)
Lời giải:
Sửa: $x^2\geq y^2+z^2$
Áp dụng BĐT Cauchy-Schwarz:
$P\geq \frac{y^2+z^2}{x^2}+\frac{7x^2}{2}.\frac{4}{y^2+z^2}+2007$
$=\frac{y^2+z^2}{x^2}+\frac{14x^2}{y^2+z^2}+2007$
$=\frac{y^2+z^2}{x^2}+\frac{x^2}{y^2+z^2}+\frac{13x^2}{y^2+z^2}+2007$
$\geq 2+\frac{13x^2}{y^2+z^2}+2007$ (áp dụng BĐT Cô-si)
$\geq 2+13+2007=2022$ (do $x^2\geq y^2+z^2$)
Vậy $P_{\min}=2022$
2
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)
ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1
=> A ≥ 1
=> Min A =1 khi 1/3 ≤ x ≤ 2/3
Thay \(z=x+y+1\) vào P ta có:
\(P=\frac{x^3y^3}{\left\{\left[x+y\left(x+y+1\right)\right]\left[y+x\left(x+y+1\right)\right]\left[xy+y+x+z\right]\right\}^2}\)
\(=\frac{x^3y^3}{\left[\left(x+1\right)\left(y+1\right)\left(x+y\right)^2\right]^2}\)
Mà \(x+1\ge2\sqrt{x};y+1\ge2\sqrt{y};x+y\ge2\sqrt{xy}\)
=> \(P\le\frac{x^3y^3}{\left(2\sqrt{x}.2\sqrt{y}.4xy\right)^2}=\frac{1}{256}\)
MaxP=1/256 khi \(a=b=1;c=3\)
\(x^2\ge y^2+z^2\Rightarrow\dfrac{x^2}{y^2+z^2}\ge1\)
\(P=\dfrac{y^2+z^2}{x^2}+x^2\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2019\ge\dfrac{y^2+z^2}{x^2}+x^2.\dfrac{4}{y^2+z^2}+2019\)
\(P\ge\dfrac{y^2+z^2}{x^2}+\dfrac{x^2}{y^2+z^2}+3\dfrac{x^2}{y^2+z^2}+2019\)
\(P\ge2\sqrt{\dfrac{y^2+z^2}{x^2}.\dfrac{x^2}{y^2+z^2}}+3.1+2019=2024\)
\(P_{min}=2024\) khi \(x^2=2y^2=2z^2\)