\(\dfrac{2a^3}{a^6+bc}+\dfrac{2b^3}{b^6+ca}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Lời giải:

Áp dụng BĐT AM-GM ta có hệ quả quen thuộc sau:

\(a^2+b^2+c^2\geq ab+bc+ac\)

\(\Leftrightarrow (a+b+c)^2\geq 3(ab+bc+ac)\)

\(\Leftrightarrow \frac{(a+b+c)^2}{3}\geq ab+bc+ac\Rightarrow \frac{3}{ab+bc+ac}\geq \frac{3}{\frac{(a+b+c)^2}{3}}=\frac{9}{(a+b+c)^2}\)

Do đó:

\(1+\frac{3}{ab+bc+ac}\geq 1+\frac{9}{(a+b+c)^2}\) (1)

Ta sẽ đi chứng minh \(1+\frac{9}{(a+b+c)^2}\geq \frac{6}{a+b+c}\) (2)

\(\Leftrightarrow \left(\frac{3}{a+b+c}-1\right)^2\geq 0\) (đúng)

Từ (1),(2) suy ra \(1+\frac{3}{ab+bc+ac}\geq \frac{6}{a+b+c}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

8 tháng 12 2018

Câu hỏi t/tự

3 tháng 4 2018

B1:

\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Xét hiệu:

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\)

\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)

\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

=> BĐT luôn đúng

*

Ta có:

\(a< b+c\Rightarrow a^2< ab+ac\)

\(b< a+c\Rightarrow b^2< ab+ac\)

\(c< a+b\Rightarrow a^2< ac+bc\)

Cộng từng vế bất đẳng thức ta được:

\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Vậy: \(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

3 tháng 4 2018

B2:

Ta có: \(a+b>c\) ; \(b+c>a\); \(a+c>b\)

Xét:\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{a+b+c}+\dfrac{1}{a+c+b}=\dfrac{2}{a+b+c}>\dfrac{2}{b+c+b+c}=\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+c+a+c}=\dfrac{1}{a+c}\)

Suy ra:

\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b}\)

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

=> ĐPCM

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Lời giải:

\(\frac{a^2+bc}{b+c}+\frac{b^2+ac}{c+a}+\frac{c^2+ab}{a+b}\geq a+b+c\)

\(\Leftrightarrow \frac{a^2+bc}{b+c}-c+\frac{b^2+ac}{a+c}-a+\frac{c^2+ab}{a+b}-b\geq 0\)

\(\Leftrightarrow \frac{a^2-c^2}{b+c}+\frac{b^2-a^2}{a+c}+\frac{c^2-b^2}{a+b}\geq 0\)

\(\Leftrightarrow a^2\left(\frac{1}{b+c}-\frac{1}{a+c}\right)+b^2\left(\frac{1}{a+c}-\frac{1}{a+b}\right)+c^2\left(\frac{1}{a+b}-\frac{1}{b+c}\right)\geq 0\)

\(\Leftrightarrow \frac{a^2(a-b)(a+b)+b^2(b-c)(b+c)+c^2(c-a)(c+a)}{(a+b)(b+c)(c+a)}\geq 0\)

\(\Leftrightarrow a^2(a^2-b^2)+b^2(b^2-c^2)+c^2(c^2-a^2)\geq 0\)

\(\Leftrightarrow a^4+b^4+c^4-(a^2b^2+b^2c^2+c^2a^2)\geq 0\)

\(\Leftrightarrow \frac{(a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2}{2}\geq 0\) (luôn đúng)

Do đó ta có đpcm

Dấu bằng xảy ra khi $a=b=c$

26 tháng 6 2017

Áp dụng bất đẳng thức \(a^2+b^2+c^2\ge ab+bc+ca\) có:

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{a^2b}{b}+\dfrac{b^2c}{c}+\dfrac{c^2a}{a}\)

\(=a^2+b^2+c^2\ge ab+bc+ca\)

Dấu " = " khi a = b = c = 1

Vậy...

23 tháng 3 2018

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)

Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

24 tháng 3 2018

Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v

Lời giải:

Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:

\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)

\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)

Áp dụng BĐT

\(\dfrac{9}{x+y+z}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\\ \Rightarrow\dfrac{9abc}{a+3a+2c}\\ =\dfrac{9}{\left(a+c\right)\left(b+c\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{4}{2}\) 

Tương tự với 2 BĐT còn lại rồi cộng vế theo vế

=> 9 vế trái

 \(\le\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\\ +\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{a+b+c}{2}\\ =\dfrac{3\left(a+b+c\right)}{2}\\ \Rightarrow......._{\left(đpcm\right)}\)