Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hi vọng là tìm GTLN:
Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).
Áp dụng bất đẳng thức AM - GM ta có:
\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)
\(\Rightarrow a+b+c\le3\).
Áp dụng bất đẳng thức Schwarz ta có:
\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).
Đẳng thức xảy ra khi a = b = c = 1.
Lời giải:
\((3a+2b)(3a+2c)=16bc\)
\(\Leftrightarrow 9a^2+6a(b+c)=12bc\)
Theo BĐT Cô-si \(4bc\leq (b+c)^2\Rightarrow 9a^2+6a(b+c)\leq 3(b+c)^2\)
\(\Rightarrow 3a^2+2a(b+c)\leq (b+c)^2\)
\(\Leftrightarrow (b+c)^2-3a^2-2a(b+c)\geq 0\)
\(\Leftrightarrow (b+c)^2-9a^2-2a(b+c)+6a^2\geq 0\)
\(\Leftrightarrow (b+c-3a)(b+c+3a)-2a(b+c-3a)\geq 0\)
\(\Leftrightarrow (b+c-3a)(b+c+a)\geq 0\)
Vì $a+b+c>0$ nên \(b+c-3a\geq 0\Rightarrow b+c\geq 3a\) (đpcm)
b) Áp dụng BĐT Cô-si và kết quả phần a:
\(\frac{a}{b+c}+\frac{b+c}{a}=\frac{a}{b+c}+\frac{b+c}{9a}+\frac{8(b+c)}{9a}\)
\(\geq 2\sqrt{\frac{a}{b+c}.\frac{b+c}{9a}}+\frac{8(b+c)}{9a}=\frac{2}{3}+\frac{8(b+c)}{9a}\geq \frac{2}{3}+\frac{8.3a}{9a}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Ta có đpcm.
Ta có:
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)
\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.\left(a+2b+3c\right)\)
\(\ge3+3+2+\frac{20}{4}=13\)
Vậy GTNN của A là 13 đạt được khi \(\hept{\begin{cases}a=2\\b=3\\c=4\end{cases}}\)
Lời giải:
Biến đổi $A$ :
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}=\frac{1}{4}(a+2b+3c)+\left(\frac{3a}{4}+\frac{3}{a}\right)+\left (\frac{b}{2}+\frac{9}{2b}\right)+\left (\frac{c}{4}+\frac{4}{c}\right)\)
Ta có: \(\frac{1}{4}(a+2b+3c)\geq \frac{20}{4}=5\)
Áp dụng BĐT AM-GM: \(\left\{\begin{matrix} \frac{3a}{4}+\frac{3}{a}\geq 3\\ \frac{b}{2}+\frac{9}{2b}\geq 3\\ \frac{c}{4}+\frac{4}{c}\geq 2\end{matrix}\right.\)
Do đó \(A\geq 5+3+3+2=13\) hay \(A_{\min}=13\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} a=2\\ b=3\\ c=4\end{matrix}\right.\)
Mấu chốt của bài toán là cách tìm điểm rơi.
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(A=\frac{1}{4}\left(a+2b+3c\right)+\left(\frac{3}{4}a+\frac{3}{a}\right)+\left(\frac{1}{2}b+\frac{9}{2b}\right)+\left(\frac{1}{4}c+\frac{4}{c}\right)\)
Áp dụng BĐT AM-GM ta có:
\(A\ge\frac{1}{4}\left(a+2b+3c\right)+2.\sqrt{\frac{3}{4}a.\frac{3}{a}}+2.\sqrt{\frac{1}{2}b.\frac{9}{2b}}+2.\sqrt{\frac{1}{4}c.\frac{4}{c}}\)
\(\ge\frac{1}{4}.20+\frac{2.3}{2}+\frac{2.3}{2}+2=5+3+3+2=13\)
Dấu " = " xảy ra <=> a=2 ; b=3 ; c=4
KL:........................................................
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(=\left(\frac{3}{a}+\frac{3a}{4}\right)+\left(\frac{9}{2b}+\frac{b}{2}\right)+\left(\frac{4}{c}+\frac{c}{4}\right)+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge2\sqrt{\frac{3}{a}\cdot\frac{3a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{1}{4}\cdot20\)
\(=2\cdot\frac{3}{2}+2\cdot\frac{3}{2}+2\cdot1+5=3+3+2+5=13\)
Vậy min A = 13 khi a = 2; b = 3; c = 4
a) Điều phải chứng minh tương đương với:
\(a^3+b^3-a^2b-b^2a\ge0\\ \Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\\ \Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\left(luon.dung\right)\)
Dấu = xảy ra khi a=b
b) Áp dụng bất đẳng thức ở phần a ta có:
\(\dfrac{1}{a^3+b^3+1}\le\dfrac{1}{a^2b+b^2a+abc}=\dfrac{1}{ab\left(a+b+c\right)}\\ =\dfrac{abc}{ab\left(a+b+c\right)}=\dfrac{c}{a+b+c}\left(do.abc=1\right)\)
Tương tự : \(\dfrac{1}{b^3+c^3+1}\le\dfrac{a}{a+b+c};\dfrac{1}{c^3+a^3+1}\le\dfrac{b}{a+b+c}\)
\(\Rightarrow P\le\dfrac{a+b+c}{a+b+c}=1\)
Dấu = xảy ra <=> a=b=c=1
á mk xl nhá mk ko đọc kĩ đề mk làm nhầm rùi bài mk làm là tìm GTNN nhá bạn ( mất công quá)
ta có A= a+b+c+\(\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
= \(\dfrac{3a}{4}+\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c}{4}+\dfrac{3c}{4}+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
=\(\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\)
vì a,b,c >0 ===> \(\dfrac{3a}{4}>0,\dfrac{3}{a}>0,\dfrac{b}{2}>0,\dfrac{9}{2b}>0,\dfrac{c}{4}>0,\dfrac{4}{c}>0\)
áp dụng BĐT côsi cho các cặp số dương ta đc:
\(\dfrac{3a}{4}+\dfrac{3}{a}>=2.\sqrt{\dfrac{3a}{4}.\dfrac{3}{a}}=3\)
\(\dfrac{b}{2}+\dfrac{9}{2b}>=3\)(làm như trên nhá)
\(\dfrac{c}{4}+\dfrac{4}{c}>=2\)
===> \(\dfrac{3a}{4}+\dfrac{3}{a}+\dfrac{b}{2}+\dfrac{9}{2b}+\dfrac{c}{4}+\dfrac{4}{c}>=8\left(1\right)\)
có: \(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}=\dfrac{a+2b+3c}{4}\)
mà a+2b+3c >= 20
===> \(\dfrac{a+2b+3c}{4}>=\dfrac{20}{4}=5\)
===> \(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}>=5\left(2\right)\)
từ (1) và(2)===> a+b+c+\(\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}>=13\)
===> A >= 13
Dấu ''='' xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{3a}{4}=\dfrac{3}{a}\\\dfrac{b}{2}=\dfrac{9}{2b}\\\dfrac{c}{4}=\dfrac{4}{c}\\a+2b+3c=20\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
Vậy Min A=13 <=>\(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)