Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên ta chứng minh: \(\left(a+b+c\right)\left(x+y+z\right)\le3\left(ax+by+cz\right)\)
\(\Leftrightarrow ay+az+bz+bx+cx+cy\le2\left(ax+by+cz\right)\)
\(\Leftrightarrow a\left(y+z-2x\right)+b\left(z+x-2y\right)+c\left(x+y-2z\right)\le0\)
\(\Leftrightarrow a\left(y+z-2x\right)-b\left[\left(y+z-2x\right)+\left(x+y-2z\right)\right]+c\left(x+y-2z\right)\le0\)
\(\Leftrightarrow\left(a-b\right)\left(y+z-2x\right)+\left(c-b\right)\left(x+y-2z\right)\le0\)
Không mất tính tổng quát, giả sử: \(\hept{\begin{cases}a\ge b\ge c\\x\ge y\ge z\end{cases}}\)
Theo đó: \(\hept{\begin{cases}a-b\ge0\\y+z-2x\le0\end{cases}}\Rightarrow\left(a-b\right)\left(y+z-2x\right)\le0\)
Tương tự \(\left(c-b\right)\left(x+y-2z\right)\le0\).
Ta có đpcm.
Áp dụng vào bài toán:
Đặt \(a^2+b^2=x;b^2+c^2=y;c^2+a^2=z;a+b=p;b+c=q;c+a=o\), ta có:
Đpcm \(\Leftrightarrow\frac{x}{p}+\frac{y}{q}+\frac{z}{o}\le\frac{3\cdot\frac{1}{2}\left(x+y+z\right)}{\frac{1}{2}\left(p+q+o\right)}=\frac{3\left(x+y+z\right)}{p+q+o}\)
\(\Leftrightarrow\left(\frac{x}{p}+\frac{y}{q}+\frac{z}{o}\right)\left(p+q+o\right)\le3\left(x+y+z\right)\)[*]
Mà theo bất đẳng thức đã chứng minh:
\(VT\left[+\right]\le3\left(\frac{x}{p}\cdot p+\frac{y}{q}\cdot q+\frac{z}{o}\cdot o\right)=3\left(x+y+z\right)=VP\)
Ta có đpcm
Dấu "=" xảy ra khi a = b = c
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
BĐT bên trái hiển nhiên là Nesbitt.
BĐT bên phải:
Sau khi quy đồng, phân tích thành nhân tử các kiểu gì đó thì cần chứng minh:
Giả sử . Ta cần chứng minh:
Đặt thì .
Cần chứng minh:
P/s: Bài này SOS bằng tay đẹp lắm mà thôi tạm thời làm biếng nên không SOS, dùng BW cho nhanh:P
SOS của tth_new ghê vãi,đề nghị tth_new check fb giúp t,nói mãi -_-
KMTTQ giả sử \(a\ge b\ge c\)
\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Leftrightarrow\left(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}\right)+\left(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}\right)+\left(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}\right)\ge0\)
\(\Leftrightarrow a\left(\frac{a}{b^2+c^2}-\frac{a}{b+c}\right)+b\left(\frac{b}{c^2+a^2}-\frac{b}{c+a}\right)+c\left(\frac{c}{a^2+b^2}-\frac{c}{a+b}\right)\ge0\)
\(\Leftrightarrow a\left[\frac{ab+ac-b^2-c^2}{\left(b+c\right)\left(b^2+c^2\right)}\right]+b\left[\frac{bc+ba-c^2-a^2}{\left(c+a\right)\left(c^2+a^2\right)}\right]+c\left[\frac{ca+cb-a^2-b^2}{\left(a^2+b^2\right)\left(a+b\right)}\right]\ge0\)
\(\Leftrightarrow a\left[\frac{b\left(a-b\right)+c\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\right]+b\left[\frac{c\left(b-c\right)+a\left(b-a\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]+c\left[\frac{a\left(c-a\right)+b\left(c-b\right)}{\left(a^2+b^2\right)\left(a+b\right)}\right]\ge0\)
\(\Leftrightarrow\Sigma\left[\frac{ab\left(a-b\right)}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{ab\left(a-b\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\)
\(\Leftrightarrow\Sigma ab\left(a-b\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\) ( đúng )
Vậy ta có ĐPCM
Lời giải
Bất đẳng thức cần chứng minh được viết lại thành
$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 5$
Ta chứng minh bất đẳng thức sau đây
$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$
Thật vậy, bất đẳng thức trên tương đương với
$latex \displaystyle \frac{{{\left( a-1 \right)}^{2}}\left( 2{{a}^{2}}+6a+3 \right)}{3{{a}^{2}}}\ge 0$
Hiển nhiên đúng với a là số thực dương.
Áp dụng tương tự ta được $latex \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{7}{3}-\frac{2b}{3};\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{7}{3}-\frac{2c}{3}$
Cộng theo vế các bất đẳng thức trên ta được
$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 7-\frac{2\left( a+b+c \right)}{3}=5$
Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi $latex a=b=c=1$.
Chúng ta sẽ khởi đầu kỹ thuật này bằng việc đưa ra cách giải thích cho việc tìm ra bất đẳng thức phụ trên và nó cũng chính là cách giải thích cho các bài toán sau này của chúng ta.
Bài toán trên các biến trong cả hai vế và điều kiện đều không ràng buộc nhau điều này khiến ta nghĩ ngay sẽ tách theo từng biến để chứng minh được đơn giản hơn nếu có thể. Nhưng rõ ràng chỉ từng đó thôi là không đủ. Để ý đến dấu đẳng thức xẩy ra nên ta nghĩ đến chứng minh bất đẳng thức sau
$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}\Leftrightarrow \frac{\left( a-1 \right)\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}\ge 0$
Tuy nhiên đánh giá trên không hoàn toàn đúng với a thực dương.
Để ý là với cách làm trên ta chưa sử dụng điều kiện .
Như vậy ta sẽ không đi theo đường lối suy nghĩ đơn giản ban đầu nữa mà sẽ đi tìm hệ số để bất đẳng thức sau là đúng
$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+ma+n\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)$
Trong đó m và n là các hệ số chưa xác định.
Thiết lập tương tự với các biến b và c ta được
$latex \displaystyle \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{5}{3}+mb+n;\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{5}{3}+mc+n$
Cộng theo vế các bất đẳng thức trên ta có
$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}+2{{b}^{2}}+2{{c}^{2}}}{3}\ge 5+m\left( a+b+c \right)+3n=5+3\left( m+n \right)$
Như vậy ở đây 2 hệ số m và n phải thỏa mãn điều kiện $latex \displaystyle m+n=0\Leftrightarrow n=-m$. Thế vào (1) dẫn đến
$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)$
Đến đây ta chỉ cần xác định hệ số duy nhất là m để bất đẳng thức (2) là đúng. Chú ý đẳng thức xẩy ra tại $latex a=b=c=1$ nên ta cần xác định m sao cho
$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\Leftrightarrow \left( a-1 \right)\left( \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}-m \right)\ge 0$
Khi cho $latex a=1$ thì ta có $latex \displaystyle \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}=-\frac{2}{3}$ từ đó ta dự đoán rằng $latex \displaystyle m=-\frac{2}{3}$ để tạo thành đại lượng bình phương $latex {{\left( a-1 \right)}^{2}}$ trong biểu thức. Từ đó ta sẽ chứng minh bất đẳng thức phụ
$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)
Từ giả thiết của bài toán, ta biến đổi như sau:
\(a^2+b^2+c^2+\left(a+b+c\right)^2\le4\)
\(\Leftrightarrow a^2+b^2+c^2+ab+ac+bc\le2\)
Bất đẳng thức cần chứng minh tương đương với
\(A=\frac{ab+1}{\left(a+b\right)^2}+\frac{bc+1}{\left(b+c\right)^2}+\frac{ac+1}{\left(a+c\right)^2}\ge3\)
\(\Leftrightarrow\frac{2ab+2}{\left(a+b\right)^2}+\frac{2bc+2}{\left(b+c\right)^2}+\frac{2ac+2}{\left(a+c\right)^2}\ge6\)
Áp dụng giả thiết ta được
\(\frac{2ab+2}{\left(a+b\right)^2}+\frac{2ab+2}{\left(b+c\right)^2}+\frac{2ac+2}{\left(a+c\right)^2}\ge\text{∑}\frac{2ab+a^2+b^2+c^2+ab+bc+ac}{\left(a+b\right)^2}\)
\(=1+\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}+1+\frac{\left(b+a\right)\left(c+b\right)}{\left(a+c^2\right)}+1+\frac{\left(c+a\right)\left(a+b\right)}{\left(c+b\right)^2}\)
\(=3+\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}+\frac{\left(b+a\right)\left(c+b\right)}{\left(a+c\right)^2}+\frac{\left(c+a\right)\left(a+b\right)}{\left(c+b\right)^2}\ge\)
\(3+\sqrt[3]{\frac{\left(c+a\right)\left(c+b\right)\left(b+a\right)\left(c+b\right)\left(c+a\right)\left(a+b\right)}{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}}=3+3=6\)
Vậy bài toán đã được chứng minh. Đẳng thức xảy ra khi và chỉ khi a=b=c=13√.■
Cô Quản Lý Nguyễn Linh Chi ơi cô bảo bạn đăng bài tham khảo bạn làm nhưng đã có ai làm bài đâu ạ
\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\le\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\right)\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{c\left(a^2+b^2\right)}{a+b}+\frac{a\left(b^2+c^2\right)}{b+c}+\frac{b\left(c^2+a^2\right)}{c+a}\le a^2+b^2+c^2\)
\(\Leftrightarrow\left(\frac{\left(a^2+b^2\right)c}{a+b}-c^2\right)+\left(\frac{\left(b^2+c^2\right)a}{b+c}-a^2\right)+\left(\frac{\left(c^2+a^2\right)b}{c+a}-b^2\right)\)
\(\Leftrightarrow\frac{ac\left(a-c\right)+bc\left(b-c\right)}{a+b}+\frac{ab\left(b-a\right)+ca\left(c-a\right)}{b+c}\)
\(+\frac{bc\left(c-b\right)+ab\left(a-b\right)}{c+a}\le0\)
\(\Leftrightarrow ab\left(a-b\right)\left(\frac{1}{c+a}-\frac{1}{b+c}\right)+ca\left(c-a\right)\left(\frac{1}{b+c}-\frac{1}{a+b}\right)\)
\(+bc\left(b-c\right)\left(\frac{1}{a+b}-\frac{1}{a+c}\right)\le0\)
\(\Leftrightarrow\frac{-ac\left(c-a\right)^2}{\left(a+b\right)\left(b+c\right)}+\frac{-bc\left(c-b\right)^2}{\left(a+b\right)\left(a+c\right)}+\frac{-ab\left(b-a\right)^2}{\left(a+c\right)\left(b+c\right)}\le0\)*đúng với mọi a,b,c dương*
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c