Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{bc}{8a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}\)
\(=\dfrac{\left(bc\right)^3+8\left(ca\right)^3+8\left(ab\right)^3}{8\left(abc\right)^2}\)
\(=\dfrac{\left(bc\right)^3+\left(2ca\right)^3+\left(2ab\right)^3}{8\left(abc\right)^2}\)
\(=\dfrac{\left(bc\right)^3+\left(2ab+2ca\right)^3-3.2ca.2ab\left(2ab+2ca\right)}{8\left(abc\right)^2}\)
\(=\dfrac{\left(bc\right)^3+\left(-bc\right)^3-3.2ca.2ab.\left(-bc\right)}{8\left(abc\right)^2}\)
\(=\dfrac{12\left(abc\right)^2}{8\left(abc\right)^2}=\dfrac{12}{8}\)
Thay \(c=2-\left(a+b\right)\Leftrightarrow P=2ab+c\left(a+b\right)=2ab+\left(a+b\right)\left[2-\left(a+b\right)\right]\)
\(=2ab+2\left(a+b\right)-a^2-b^2-2ab=2\left(a+b\right)-a^2-b^2=2-\left(a-1\right)^2-\left(b-1\right)^2\)
Mà \(\hept{\begin{cases}\left(a-1\right)^2\\\left(b-1\right)^2\end{cases}\ge0\forall a,b\inℝ\Rightarrow P=2-\left(a-1\right)^2-\left(b-1\right)^2\le2}\)
Dấu ''='' xảy ra \(\Leftrightarrow\) \(a=b=1\rightarrow c=0\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{2b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\)
\(M=\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=\dfrac{x^3+y^3+z^3}{xyz}\)
\(=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3}{xyz}=\dfrac{-z^3-3xy\left(-z\right)+z^3}{xyz}\)
\(=\dfrac{3xyz}{xyz}=3\)
Chuyên gia sao lại đi hỏi ( nghĩ chuyên gia phải cái gì cũng biết mà ??? )
Lời giải:
\(A=\frac{(bc)^3+(2ac)^3+(2ab)^3}{8a^2b^2c^2}=\frac{(bc)^3+(2ac+2ab)^3-3.2ac.2ab(2ac+2bc)}{8a^2b^2c^2}\)
\(=\frac{(bc)^3+(-bc)^3+12a^2b^2c^2}{8a^2b^2c^2}=\frac{12}{8}=1,5\)
Ta có
\(\frac{\left(a+b+c\right)^2}{3}\)> ab + bc + ca =3 => a + b + => 3
ta có abc > ( a+b+c) ( b + c -a ) ( c + a -b)
= ( a+b+c+ 2c) ( b + c -a +2a) ( c + a -b+2b)
> ( 3 -2c ) ( 3 - 2 a ) ( 3 - 2 b ) ( do a+b + c)> 3
= 12 ( xy + yz + zx ) -8 xyz - 18 ( x + y + z ) + 27
= 12 .3 - 8xyz - 18 .3 +27
9 - 8 xyz
ta có : xyz > 9 - 8 xyz + 8 xyz > 9 => xyz > 1
do đó : 4 ( a + b + c ) + abc > 4.3 + 1 = 13 (dpcm)
hok tốt