Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Jungkookie - Toán lớp 7 - Học toán với OnlineMath
Ta có: \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Rightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}\)
\(\Rightarrow\frac{a}{b-c}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}\)
\(\Rightarrow\frac{a}{b-c}=\frac{-ab+b^2-c^2+ac}{\left(c-a\right)\left(a-b\right)}\)
\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)
Tương tự ta có: \(\frac{b}{\left(c-a\right)^2}=\frac{-bc+c^2-a^2+ab}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)
\(\frac{c}{\left(a-b\right)^2}=\frac{-ca+a^2-b^2+bc}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)
Cộng các đẳng thức trên ta được:
\(\frac{a}{\left(b-c\right)^2}\)\(+\frac{b}{\left(c-a\right)^2}\)\(+\frac{c}{\left(a-b\right)^2}=\)\(\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ba-ca+a^2-b^2+bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{0}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
Vậy \(\frac{a}{\left(b-c\right)^2}\)\(+\frac{b}{\left(c-a\right)^2}\)\(+\frac{c}{\left(a-b\right)^2}=\)0 (đpcm)
từ đề bài \(\Rightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(a-b\right)\left(c-a\right)}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)}\)
\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\)
Tương tự : \(\hept{\begin{cases}\frac{b}{\left(c-a\right)^2}=\frac{-cb+c^2-a^2+ab}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\\\frac{c}{\left(a-b\right)^2}=\frac{-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\end{cases}}\)
Cộng vế với vế ta được : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\)
\(=\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ab-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}=0\)(đpcm)
\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
\(=3+\frac{a}{b-c}\left(\frac{c-a}{b}+\frac{a-b}{c}\right)+\frac{b}{c-a}\left(\frac{b-c}{a}+\frac{a-b}{c}\right)+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\)
\(=3+\frac{a}{b-c}.\frac{c^2-ac+ab-b^2}{bc}+\frac{b}{c-a}.\frac{bc-c^2+a^2-ab}{ac}+\frac{c}{a-b}.\frac{b^2-bc+ac-a^2}{ab}\)
\(=3+\frac{a\left(b-c\right)\left(a-b-c\right)}{\left(b-c\right)bc}+\frac{b\left(c-a\right)\left(b-c-a\right)}{\left(c-a\right)ac}+\frac{c\left(a-b\right)\left(c-a-b\right)}{\left(a-b\right)ab}\)
\(=3+\frac{2a^2}{bc}+\frac{2b^2}{ac}+\frac{2c^2}{ab}\)
\(=3+2.\frac{a^3+b^3+c^3}{abc}\)
\(=3+2.\frac{\left(a+b+c\right)^2-3\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
\(=3+2.\frac{0+3abc}{abc}\)
\(=9\left(đpcm\right)\)