Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thêm đk \(a,b,c\ne0\)
Ta có: \(\frac{ab}{a+b}=\frac{1}{3}\Rightarrow\frac{a+b}{ab}=3\)
\(\frac{bc}{b+c}=\frac{1}{4}\Rightarrow\frac{bc}{b+c}=4\)
\(\frac{ca}{c+a}=\frac{1}{5}\Rightarrow\frac{c+a}{ca}=5\)
\(\Rightarrow\frac{a+b}{ab}+\frac{b+c}{bc}+\frac{c+a}{ca}=12\)
\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}=12\)
\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=12\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
\(\frac{a}{3}=\frac{b}{8}=\frac{c}{5}\Rightarrow\frac{2a}{6}=\frac{3b}{24}=\frac{c}{5}=\frac{2a+3b-c}{6+24-5}=\frac{50}{25}=2\)
=> a/3 = 2 => a = 6
=> b/8 = 2 => b = 16
=> c/5 = 2 => c = 10
Đặt \(\frac{a}{3}=\frac{b}{8}=\frac{c}{5}=k\Rightarrow a=3k;b=8k;c=5k\)
=> \(2a+3b-c=6k+24k-5k=50\)
=> \(25k=50\Rightarrow k=2\)
=> \(\hept{\begin{cases}a=3\cdot2=6\\b=8\cdot2=16\\c=5\cdot2=10\end{cases}}\)
Ta có
\(Q+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\left(\frac{a}{b+c}+\frac{b+c}{b+c}\right)+\left(\frac{b}{a+c}+\frac{a+c}{a+c}\right)+\left(\frac{c}{a+b}+\frac{a+b}{a+b}\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)
\(=259.15\)
\(\Rightarrow Q=259.15-3=3885\)
a/3=b/8=c/5
=>2a/6=3b/24=c/5
áp dụng tc dãy ts = nhau ta có :
2a/6=3b/24=c/5=2a+3b-c/6+24-5=50/25=2
=>a/3=2=>a=6
=>b/8=2=>b=16
=>c/5=2=>c=10
=>a+b+c=6+16+10=32