Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-
*) Chứng minh NE và MD không song song
Ta có: Tia NE là tia phân giác của BNC. NE không vuông góc với BC
Tia MD là tia phân giác của BMC. MD không vuông góc với BC
Từ 2 điều trên suy ra: NE và MD không song song (cái này mình k chắc, có thể tự nghĩ cách khác nha)
NE và MD cắt nhau tại F. (6)
*) Ta có: \(\widehat{BNC}=\ \widehat{BMC}\)
\(\widehat{ABC}=\ \widehat{ACB}\)
\(\Delta BMC\ \&\ \Delta BNC\) có chung cạnh huyền BC
Từ ba điều trên suy ra: \(\Delta BMC\) \(=\Delta BNC\) \(\Rightarrow NB=MC\) (2 tam giác bằng nhau)
*) Ta có: \(\widehat{BNE}=\ \widehat{CMO}\)
\(\widehat{ABC}=\ \widehat{ACB}\)
\(NB=MC\)
Từ ba điều trên suy ra: \(\Delta BNQ=\Delta PMC\)
\(=>\) Góc NQB= Góc MPC(1)
Ta lại có: \(\widehat{FQP}=\ \widehat{NQB}\) (2 góc đối đỉnh) (2)
\(\widehat{FPQ}=\ \widehat{MPC}\) (2 góc đối đỉnh) (3)
Từ (1); (2); (3) suy ra: \(\widehat{FQP}=\ \widehat{FPQ}\)
=> Tam giác FQP cân tại F
Vẽ đường cao FK
=> PK=KQ
=> K là trung điểm của PQ.
=> FK là đường trung tuyến của tam giác FPQ=> Góc FKP = 90 độ hay Góc FKC = 90 độ (4)
*)Mà AK là đường trung tuyến của tam giác ABC. Mà tam giác ABC là tam giác cân. suy ra: Góc AKC= 90 độ (5)
Từ 2 điều (4) và (5) suy ra: Ba điểm A; K; F thẳng hàng.(7)
Từ 2 điều (6) và (7) suy ra: Ba đường NE, MD, AK đồng quy. (tại F)
Vậy...
toán hình lớp 6 nha