Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Mặt phẳng (ABC) cắt mặt cầu theo đường tròn ngoại tiếp tam giác ABC.
Ta có AH ⊥ DC. Do đó khi CD di động, điểm H luôn luôn nhìn đọan thẳng AI dưới một góc vuông. Vậy tập hợp các điểm H là đường tròn đường kính AI nằm trong mặt phẳng ( α ).
Tam giác ADC vuông tại A nên AD 2 = DC 2 - AC 2 (1)
Tam giác ABC vuông tại A nên BC 2 = AC 2 + AB 2 (2)
Từ (1) và (2) ta suy ra AD 2 + BC 2 = DC 2 + AB 2 (3)
Ta lại có:
AC 2 = DC 2 - AD 2 và BD 2 = AD 2 + AB 2 (4)
DC 2 = 4 r 2 - h 2 , AB 2 = 4 h 2 (5)
Từ (4) và (5) ta có:
AC 2 + BD 2 = DC 2 + AB 2 = 4 r 2 - h 2 + 4 h 2 = 4 r 2 (6)
Từ (3) và (6) ta có: AD 2 + BC 2 = AC 2 + BD 2 (không đổi)
Diện tích tam giác BCD bằng:
Diện tích này lớn nhất khi AI // CD.
Hướng dẫn giải:
a) Trong hình hộp chữ nhật, bốn đường chéo AC", BD', CA" và DB" căt nhau tại điểm I là trung điểm của mỗi đường.
Vì 4 đường chéo trong hình hộp chữ nhật bằng nhau, nên điểm I cách đề 8 đỉnh của hình hộp chữ nhật. Nó là tâm của mặt cầu ngoại tiếp hình hộp.
Vì AB = b, AD = c, AA' = a nên bán kính mặt cầu .
b) Giao tuyến của mặt phẳng ABCD với mặt cầu ngoại tiếp hình hộp chữ nhật ABCD.A'B'C'D' là hai đwòng tròn ngoại tiếp hình chữ nhật ABCD. Nên bán kính của đường trong giao tuyến là