Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{9}{3}=3\) ; \(xyz\le\frac{\left(x+y+z\right)^3}{27}=\frac{27}{27}=1\)
\(P=x^4+y^4+z^4+12\left(1-z-y+yz-x+xz+xy-xyz\right)\)
\(=x^4+y^4+z^4+12-12xyz-12\left(x+y+z\right)+12\left(xy+yz+zx\right)\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}+12-12.\frac{\left(x+y+z\right)^3}{27}-12.3+12\left(xy+yz+zx\right)\)
\(\ge3+12-12.1-36+4.\left(xy+yz+zx\right)\left(x+y+z\right)\)
\(\ge-33+4.\left(xy+yz+zx\right)\left(\frac{x+y+z}{xyz}\right)\)
\(=-33+4.\left(xy+yz+zx\right)\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\ge-33+4\left(xy.\frac{1}{xy}+yz.\frac{1}{yz}+zx.\frac{1}{zx}\right)^2\)
\(=-33+4\left(1+1+1\right)^2=-33+36=3\)
Dau '=' xay ra khi \(x=y=z=1\)
Vay \(P_{min}=3\)khi \(x=y=z=1\)
\(3,=\left(x-y\right)^3+\left(y-x+x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3+\left(y-x\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-x+x-z\right)+\left(x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3-\left(x-y\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-z\right)-\left(z-x\right)^3+\left(z-x\right)^3\\ =3\left(y-x\right)\left(x-z\right)\left(y-z\right)\)
\(4,=\left(x^4+3x^3-x^2\right)+\left(3x^3+9x^2-3x\right)-\left(x^2+3x-1\right)\\ =x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)^2\)
1: Phân tích thành nhân tử
c) Ta có: \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
Có x+y+z=0
<=>(x+y+z)+(x+y+z)=0
<=>x+y+z+x+y+z=0
<=>2x+2y+2z=0
<=>(2x+2y+2z).2=0(1)
Tương tự có :(4x+4y+4z).2=0(2)
Từ (1)và(2) có (x2+y2+z2).2=2.(x4+y4+z4)
Chúc bạn học tốt nha
Bài 3:
\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)
\(=\left(x^2-9\right)\left(x^2-1\right)+15\)
\(=x^4-10x^2+9+15\)
\(=x^4-10x^2+24\)
\(=\left(x^2-4\right)\left(x^2-6\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)
A=x4+2x3z-2xz3-z4-4x2y2+2y2z2
=(x4-z4)+(2x3z-2xz3)+(-4x2y2+4y2z2)
=(x2-z2)(x2+z2)+2xz(x2-z2)-4y2(x2-z2)
=(x2-z2)(x2+z2+2xz-4y2)
=(x2-z2)((x2+z2)-4y2)
=(x2-z2)((x+z)2-4y2)
=(x2-z2)((2y)2-4y2)
=(x2-z2)(4y2-4y2)
=(x2-z2).0
=0