Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x+3y=5
=>x=\(\frac{5-3x}{2}\)
=>F=\(2.\frac{\left(5-3y\right)^2}{4}+3y^2=\frac{25-30y+9y^2}{2}+\frac{6y^2}{2}\)
\(=\frac{25-30y+15y^2}{2}=\frac{15y^2-30y+15+10}{2}\)
\(=\frac{15.\left(y-1\right)^2+10}{2}=\frac{15.\left(y-1\right)^2}{2}+5\ge5\)
Dấu "=" xảy ra khi : y=1 =>x=\(\frac{5-3}{2}=1\)
kakaka bik giải rùi
Ta có \(A=2x+3y+5z+\frac{1}{x}+\frac{8}{y}+\frac{16}{z}\)
\(=\left(x+y+z\right)+\left(x+\frac{1}{x}\right)+\left(2y+\frac{8}{y}\right)+\left(4z+\frac{16}{z}\right)\)
\(\ge5+2+2\sqrt{2.8}+2\sqrt{4.16}=31\)
MinA=31 khi a=1; b=c=2
Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)
Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Chứng minh tương tự:
\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)
Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Bạn tham khảo nhé
https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737
\(\begin{cases} 2x+y+3z=6 (1) \\ 3x+4y-3z=4 (2) \end{cases} \)
Từ hệ phương điều kiện, ta có:
Lấy (1) + (2) ta được: 5x+5y= 10 \(\Rightarrow\) x+y=2 \(\Leftrightarrow\) y=2-x (3)
từ(1) ta suy ra y=6-3z-2x thế biểu thức vào phương trình (2) , ta được :
-5x-15z=-20 \(\Leftrightarrow\) x+3z=4 \(\Leftrightarrow\) z =\(\dfrac{4}{3} - \dfrac{x}{3}\) (4)
thay (4) và (2) vào P ta được :
P= 2x+3y-4z = 2x +3.(2-x)- 4.(\(\dfrac{4}{3}-\dfrac{x}{3}\)) =2x+6-3x-\(\dfrac{16}{3}+\dfrac{4x}{3} = \dfrac{x}{3}+ \dfrac{2}{3}\)
\(\Rightarrow\)Min P \(\Leftrightarrow\) \(\dfrac{x}{3}\) đạt GTNN mà 3>0 cố định \(\Rightarrow\) Min P\(\Leftrightarrow\) x đạt GTNN
Mà x >= 0, x là số thực nên Min P = \(\dfrac{2}{3}\) ,dấu "=" xảy ra khi và chỉ khi :
x=0
Ta có x + y = 2 \(\Rightarrow\) y=2 ; z = \(\dfrac {4}{3} - \dfrac {x}{3}\) \(\Rightarrow \) z =\(\dfrac{4}{3}\)
Vậy Min P =\(\dfrac{2}{3}\) khi x =0, y =2, z = \(\dfrac{4}{3}\)
\(2x+3y=5\Rightarrow\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2=25\)từ đây bạn sẽ có
Áp dụng bất đẳng thức bunhiacopxki ta có:
\(25=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)\)
hay
\(25\le5.\left(2x^2+3y^2\right)\Rightarrow2x^2+3y^2\ge5\)
vậy, min F = 5 <=> x = y = 1