K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:

Gọi $d$ là ƯCLN của $(2n+1, 2n-1)$

Ta có: $2n+1\vdots d; 2n-1\vdots d$

$\Rightarrow (2n+1)-(2n-1)\vdots d$ hay $2\vdots d$

$\Rightarrow d=\left\{1;2\right\}$

Nếu $d=2$ thfi $2n+1\vdots 2$ (vô lý vì $2n+1$ lẻ)

$\Rightarrow d=1$

Tức là $2n-1, 2n+1$ nguyên tố cùng nhau.

15 tháng 1 2021

undefined

đề bài là -2n+9 là số nguyên tố chứ

20 tháng 4 2019

Nếu vậy thì giải dùm tớ

11 tháng 3 2016

đơn giản mà!

\(2^n+1\) là SNT nên \(n=2^x\) Do đó, \(2^n-1=2^{2^x}-1\)chia hết cho 3

6 tháng 11 2015

ông cũng chơi bang bang ak tích tui nha

7 tháng 10 2017

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

22 tháng 1 2023

chứng minh kiểu j vậy?

sai bét

 

5 tháng 7 2017

a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:

2a + 1 = n^2 ﴾1﴿

3a +1 = m^2 ﴾2﴿

từ ﴾1﴿ => n lẻ, đặt: n = 2k+1, ta được:

2a + 1 = 4k^2 + 4k + 1 = 4k﴾k+1﴿ + 1

=> a = 2k﴾k+1﴿

vậy a chẵn .

a chẳn => ﴾3a +1﴿ là số lẻ và từ ﴾2﴿ => m lẻ, đặt m = 2p + 1

﴾1﴿ + ﴾2﴿ được:

5a + 2 = 4k﴾k+1﴿ + 1 4p﴾p+1﴿ + 1

=> 5a = 4k﴾k+1﴿ + 4p﴾p+1﴿

mà 4k﴾k+1﴿ và 4p﴾p+1﴿ đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8

ta cần chứng minh a chia hết cho 5:

chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9

xét các trường hợp:
 a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 ﴾vô lý﴿

a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 ﴾vô lý﴿ ﴾vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7﴿

a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 ﴾vô lý﴿

a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 ﴾vô lý﴿

=> a chia hết cho 5 5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40

hay : a là bội số của 40

26 tháng 7 2023

a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:

2a + 1 = n^2 ﴾1﴿

3a +1 = m^2 ﴾2﴿

từ ﴾1﴿ => n lẻ, đặt: n = 2k+1, ta được:

2a + 1 = 4k^2 + 4k + 1 = 4k﴾k+1﴿ + 1

=> a = 2k﴾k+1﴿

vậy a chẵn .

a chẳn => ﴾3a +1﴿ là số lẻ và từ ﴾2﴿ => m lẻ, đặt m = 2p + 1

﴾1﴿ + ﴾2﴿ được:

5a + 2 = 4k﴾k+1﴿ + 1 4p﴾p+1﴿ + 1

=> 5a = 4k﴾k+1﴿ + 4p﴾p+1﴿

mà 4k﴾k+1﴿ và 4p﴾p+1﴿ đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8

ta cần chứng minh a chia hết cho 5:

chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9

xét các trường hợp:
 a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 ﴾vô lý﴿

a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 ﴾vô lý﴿ ﴾vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7﴿

a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 ﴾vô lý﴿

a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 ﴾vô lý﴿

=> a chia hết cho 5 5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40

hay : a là bội số của 40

15 tháng 4 2018

\(-2n+9\) là số nguyên tố

\(\Rightarrow\)\(-2n+9>0\)

\(\Rightarrow\)\(2n< 9\)

\(\Rightarrow\)\(n< 4,5\)

do  \(n\in N\) \(\Rightarrow\)\(n=\left\{1,2,3,4\right\}\)

Với  \(n=1\)\(\Rightarrow\)\(2n+1=3\) ko phải số chính phương   (loại)

Với  \(n=2\)\(\Rightarrow\)\(2n+1=5\)ko phải số chính phương    (loại) 

Với  \(n=3\)\(\Rightarrow\)\(3n+1=10\)ko phải số chính phương    (loại) 

Với  \(n=4\) \(\Rightarrow\)\(3n+1=13\)ko phải số chính phương    (loại) 

Vậy ko tìm đc  \(x\in N\)thỏa mãn:  2n+1;  3n+1  là số chính phương  và   -2n+9   là số nguyên tố

11 tháng 4 2018

bài khó à nha

ko dễ