K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

Tham khảo:
 

Ta có: 2^n+1;2^n;2^n-1  là 3 số tự nhiên liên tiếp

=>một trong 3 số trên chia hết cho 3

mà 2^n+1 là số nguyên tố(n>2)=>2^n+1 ko chia hết cho 3

mặt khác: 2^n ko chia hết cho 3

=>2^n-1 chia hết cho 3

CHÚC CẬU HỌC TỐT VÀ ĐẠT KẾT QUẢ CAO!

 

30 tháng 11 2021

Cảm ơn bạn nha :3

8 tháng 3 2017

Vì 2n+1 là số nguyên tố với n > 2

=> ta có: 2n+1-1 = 2n => chia hết cho 2 => 2n+1 là nguyên tố thì 2n-1 là hợp số (đpcm)

29 tháng 11 2021
Hãy trả lời câu hỏi này Năm nay tuổi mẹ gấp 5 lần tuổi con . Tính tuổi của mỗi người,biết rằng mẹ hơn con 32 tuổi
19 tháng 8 2016

lớp mấy mà không biết làm hả

19 tháng 8 2016

năm nay lên lớp 6

27 tháng 5 2022

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40

31 tháng 10 2017

Ai giúp tui nha

tui k cho 

thanks

31 tháng 10 2017

bạn muốn hởi gì

26 tháng 1 2016

Vì n+1 và 2n+1 là số chính phương nên ta đặt n+1=k2 và 2n+1=m2     (k,m \(\in\)N)

Ta có: 2n+1 là số lẻ => m2 là số lẻ =>m là số lẻ

=>m=2a+1      (a \(\in\) N)

=>m2=(2a+1)2=(2a)2+2.2a.1+12

                    =4a.a+4.a+1

                  =4a(a+1)+1

=>n=\(\frac{2n-1}{2}=\frac{4a\left(a+1\right)+1-1}{2}=\frac{4a\left(a+1\right)}{2}=2a\left(a+1\right)\)

=>n là số chẵn

=>n+1 là số lẻ => n+1=2b+1              (b \(\in\)N)

=>k2=(2b+1)2=(2b)2+2.2b.1+12

                    =4b.b+4b+1

                   =4b(b+1)+1

=>n=4b(b+1)+1-1=4b(b+1)

Ta có: b(b+1) là tích 2 số tự nhiên liên tiếp

=>4b(b+1) chia hết cho 2.4=8          (1)

Ta có: k2+m2=(n+1)+(2n+1)=3n+2=2      (mod 3) 

Mà k2 chia 3 dư 0 hoặc 1; m2 chia 3 dư 0 hoặc 1

=>Để k2+m2 =2        (mod 3)

thì k2=1      (mod 3)

và m2=1       (mod 3)

=>m2-k2 chia hết cho 3

=>(2n+1)-(n+1)=n chia hết cho 3

Vậy n chia hết cho 3              (2)

Từ (1) và (2) và (8;3)=1

=>n chia hết cho 8.3=24    (đpcm)