K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2015

dễ mà!  mọi người cứ làm quá lên

15 tháng 11 2016

không trả lời được mà dễ

10 tháng 8 2018

Giả sử trong 100 số nguyên dương đã cho không tồn tại 2 số nào bằng nhau

Không mất tính tổng quát, giả sử \(a_1< a_2< a_3< ...< a_{100}\)

\(\Rightarrow a_1\ge1;a_2\ge2;a_3\ge3;....;a_{100}\ge100\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a^2_3}...+\frac{1}{a^2_{100}}\le\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\left(1\right)\)

Lại có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=\frac{199}{100}\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{a_1^2}+\frac{1}{a^2_2}+...+\frac{1}{a^2_{100}}< \frac{199}{100}\) trái với giả thiết

Vậy tồn tại ít nhất 2 số bằng nhau trong 100 số a1,a2,...,a100

28 tháng 6 2015

20^2x có tận cùng là 0

12^2x=144^x;2012^2x=4048144^x

xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4

4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4 

suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)

xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6

4948144^2k=(...6)^k có tận cùng là 6

suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)

từ(1) và (2) suy ra không tồn tại số x

4 tháng 1 2019

Đinh Tuấn việt chép mạng thề luôn!

nếu x = 2k thì 2015^2x = 4060225^x chứ không phải là 4048144^x nha

Nếu mún bt hãy xem dòng thứ 2 của lời giải của bạn ấy có ghi là

2012^2x = 4048144^x 

Nhưng đề bài lại nói là 2015^2x  cơ mà ??

9 tháng 2 2019

Áp dụng ta đc:

\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}=\frac{5a+5b+5c}{a+b+c}=5\left(\text{vì: a,b,c khác 0}\right)\)

\(\Rightarrow\hept{\begin{cases}b+c=2a\\c+a=2b\\a+b=2c\end{cases}}\Rightarrow a=b=c\)

\(\Rightarrow P=6\)

\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)

\(\Rightarrow\frac{3a+b+c}{a}-2=\frac{a+3b+c}{b}-2=\frac{a+b+3c}{c}-2\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

Xét \(a+b+c\ne0\)

\(\Rightarrow a=b=c\)

Thay vào P ta được P=6

Xét \(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)

Thay vào P ta được P= -3

Vậy P có 2 gtri là ...........

5 tháng 1 2017

-5^2016

5 tháng 1 2017

nhầm kết quả ra 5 đấy 

29 tháng 10 2016

Giải:

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2016}}{a_{2017}}=\frac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+a_4+...+a_{2017}}\)

\(\Rightarrow\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2016}}{a_{2017}}=\left(\frac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+a_4+...+a_{2017}}\right)^{2016}\)

\(\Rightarrow\frac{a_1}{a_{2017}}=\left(\frac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+a_4+...+a_{2017}}\right)^{2016}\left(đpcm\right)\)

1 tháng 1 2017

Có:

a1+a2=a3+a4=...=a2015+a1=1

=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015

Mà 1007+a2015=0

=>a2015=-1007.

=>a1=1--1007

a1=1008.

Chúc học tốt^^

1 tháng 1 2017

Có:

a1+a2=a3+a4=...=a2015+a1=1

=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015

Mà 1007+a2015=0

=>a2015=-1007.

=>a1=1--1007

a1=1008.

Chúc học tốt^^