Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong 2003 số đã cho chỉ nhận nhiều nhất 4 giá trị khác nhau
Thật vậy: Giả sử chúng có nhiều hơn 4 giá trị khác nhau, gọi a1;a2;a3;a4;a5; là 5 số khác nhau,Giả sử
a1<a2<a3<a4<a5 khi đó với 4 số bất kì a1;a2;a3;a4 ta có a1a2\(\ne\) a3a4;a1a3\(\ne\)a2a4;a1a4\(\ne\) a2a3 tức là 4 số a1;a2;a3;a4 không thể lập nên 1 tỉ lệ thức
=>trái giả thiết của đề bài
Mặt khác 2003=4.500+3,Vì vậy phải có 599+1=501 số bằng nhau
trong 2003 số đã cho chỉ nhận 4 giá trị khác nhau
Giả sử chúng có > 4 giá trị khác nhau, thì gọi x1;x2;x3;x4;x5; là 5 số khác nhau
Giả sử x1<x2<x3<x4<x5 khi đó với 4 số bất kì x1;x2;x3;x4; ta có a1a2 không bằng x3x4;x1x3 và không bàng x2x4;x1x4 không bằng a2a3 nghĩa là 4 số x1;x2;x3;x4 không có cách nào để lập nên 1 tỉ lệ thức
=>ngược giả thiết của đề bài
ở một hướng khác =4.500+3,Vì vậy phải có 599+1=501 số bằng nhau
Bài này ta chỉ cần chứng minh có 4 số khác nhau trong 2002 số là được
Giả sử có 5 số khác nhau thì có 5 số a_1<a_2<a_3<a_4<a_5
Theo đề bài ta có
Xét 4 số a1;a2;a3;a4
a1.a4=a2.a3(ko thể có a1.a2=a3.a4 hay a1.a3=a2.a4) (1)
Xét 4 số a1;a2;a3;a5
a1.a5=a2.a3 (2)
Từ (1) và (2) suy ra a4=a5(không thỏa mãn)
Suy ra chỉ có 4 số khác nhau trong đó
Từ có 4 số khác nhau thì việc suy ra có 501 số bằng nhau quá dễ dàng
định lí bitago