Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 7 số TN đó là A, B, C, D, E, F, G. Lấy kết quả của bài 1: Trong 3 số tự nhiên bất kỳ luôn có 2 số là số chẵn ( chia hết cho 2)
A, B, C Và D, E, F mỗi nhóm có 1 cặp chia hết cho 2
* Giả thử (A+B) =2 m và (D+E)=2n --> (A+B) + (C+D)= 2(m+n)
Còn 3 số C F G sẽ có 1 cặp chia hết cho 2
( C + F) = 2 p Với m,n,p cúng là số tự nhiên
Trong 3 số m, n, p luôn chọn được 2 số có tổng chia hết cho 2.
*Giả thử (m + n) =2 q ( q là số TN) thì ta có
(A+B) + (C+D)= 2(m+n) = 4q ==> A+B+C+D chia hết cho 4 (ĐPCM)
Tương tự nếu chon các nhóm số khác ta cũng được 4 số trong 7 số bât kỳ trên chia hết cho 4
Khi xét 1 số tự nhiên khi chia cho 10 => Có thể xảy ra 10 trường hợp về số dư (1) Mà các số tự nhiên từ 11 --> 21 gồm (21 - ) + 1 = 11 số.Biết mỗi số cộng với đúng số thứ tự của nó được 1 tổng => Có 11 tổng , mỗi tổng đều có giá trị là 1 số tự nhiên (2)Từ (1) và (2) => Trong 11 tổng trên chắc chắn có 2tổng có cùng số dư khi chia cho 11 => Luôn hai tổng có hiệu chia hết cho 10.