K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2018

Ta có a1 +a2+...+a20 <0 

Lại có a2+a3+a4 >0;

          a5 +a6+a7 >0;

          a8+a9+a10>0;

          a11+a12+a13>0;

          a15+a16+a17>0;

          a18 +a19+a20>0;

          a1>0

          => a14<0;

Lại có a1+a2+a3 >0;

           a4+a5+a6>0;

            ....

            a10+a11+a12>0;

             a15+a16+a17>0;

             a18+a19+a20>0;

             => a13+a14<0;

              mà a12+a13+a14>0;

              =>a12>0;

              => a1.a12>0;

               a1.a14+a14.a12<0;

               =>a1.a14+a14.a12<a1.a12 

       

2 tháng 12 2018

Câu hỏi của Vu Kim Ngan - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

25 tháng 2 2020

Ta có a1 +a2+...+a20 <0 
Lại có a2+a3+a4 >0;
          a5 +a6+a7 >0;
          a8+a9+a10>0;
          a11+a12+a13>0;
          a15+a16+a17>0;
          a18 +a19+a20>0;
          a1>0
          => a14<0;
Lại có a1+a2+a3 >0;
           a4+a5+a6>0;
            ....
            a10+a11+a12>0;
             a15+a16+a17>0;
             a18+a19+a20>0;
             => a13+a14<0;
              mà a12+a13+a14>0;
              =>a12>0;
              => a1.a12>0;
               a1.a14+a14.a12<0;
               =>a1.a14+a14.a12<a1.a12

ta có

a1+(a2+a3+a4)+... +(a11+a12+a13)+a14+(a15+a16+a17)+(a18+a19+a20)<0

a1>0; a2+a3+a4>0;...;a11+a12+a13>0;a15+a16+a17>0;a18+a19+a20>0; a14<0

Ta có:

(a1+a2+a3)+...+(a10+a11+a12)+(a13+a14)+(a15+a16+a17)+(a18+a19+a20)<0

=>(a13+a14)<0

có a12+a13+a14>0=>a12>0

Từ các cmt suy ra a1>0; a12>0; a14<0

=>a1. a14+a12.a12<a1.a12(đpcm)

9 tháng 3 2020

ta có

a1+(a2+a3+a4)+... +(a11+a12+a13)+a14+(a15+a16+a17)+(a18+a19+a20)<0

a1>0; a2+a3+a4>0;...;a11+a12+a13>0;a15+a16+a17>0;a18+a19+a20>0; a14<0

Ta có:

(a1+a2+a3)+...+(a10+a11+a12)+(a13+a14)+(a15+a16+a17)+(a18+a19+a20)<0

=>(a13+a14)<0

có a12+a13+a14>0=>a12>0

Từ các cmt suy ra a1>0; a12>0; a14<0

=>a1. a14+a12.a12<a1.a12(đpcm)

# HOK TỐT #

ta có

a1+(a2+a3+a4)+... +(a11+a12+a13)+a14+(a15+a16+a17)+(a18+a19+a20)<0

a1>0; a2+a3+a4>0;...;a11+a12+a13>0;a15+a16+a17>0;a18+a19+a20>0; a14<0

Ta có:

(a1+a2+a3)+...+(a10+a11+a12)+(a13+a14)+(a15+a16+a17)+(a18+a19+a20)<0

=>(a13+a14)<0

có a12+a13+a14>0=>a12>0

Từ các cmt suy ra a1>0; a12>0; a14<0

=>a1. a14+a12.a12<a1.a12