K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

Ta có: a1 + (a2 +a3 + a4) +...+ (a11 + a12 +a13) + a14 + (a15 + a16 + a17) + (a18 + 19 +a20) <0; a1>0; a2 +a3 + a4 >0 ;...; a11 + a12 +a13 >0; a15 + a16 + a17 >0; a18 + 19 +a20 >0; a14 <0

Cũng như vậy: (a1 + a2 +a3) +...+(a10 +a11 +a12) + (a13 +a14) + (a15 +a16 +a17) + (a18 +a19 + a20) <0 =>(a13 +a14)<0

Mặt khác a12 + a13 +a14 >0 => a12>0

Từ điều kiện a1 >0; a12>0; a14<0 => a1.a14 + a14.a12 <a1.a12(đpcm)

1 tháng 2 2017

bn Nguyễn Đình Bin nhóm sai rk

24 tháng 4 2016

sai đề : phải là: a1.a14+a14.a12<a1.a12  nếu thế thì giải như sau

Ta có : a1 + (a2 + a3 + a4) + … + (a11 + a12 + a13) + a14 + (a15 + a16 + a17) + (a18 + a19 + a20) < 0 ; a1 > 0 ; a2 + a3 + a4 > 0 ; … ; a11 + a12 + a13 > 0 ; a15 + a16 + a17 > 0 ; a18 + a19 + a20 > 0 => a20 < 0.

Cũng như vậy : (a1 + a2 + a3) + … + (a10 + a11 + a12) + (a13 + a14) + (a15 + a16 + a17) + (a18 + a19 + a20) < 0 => a13 + a14 < 0.

Mặt khác, a12 + a13 + a14 > 0 => a12 > 0.

Từ các điều kiện a1 > 0 ; a12 > 0 ; a14 < 0 => a1.a14 + a14a12 < a1.a12 [dpcm]

3 tháng 1 2017

Bổ đề: Do x+(-x) = 0 (mod 2) nên ta cũng có x = -x = |x| (mod 2). 

Vậy S = (a1-a2)+(a2-a3)+...+(an-a1) (mod 2) 
<=> S = 0 (mod 2) (đpcm).

19 tháng 1 2017

bai nay thi to...bo tay.com.vn

31 tháng 3 2023

Xét tổng

  Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0

Suy ra có ít nhất một trong 7 số  là số chẵn

  là số chẵn

27 tháng 3 2017

TK MÌNH ĐI MỌI NGƯỜI MÌNH BỊ ÂM NÈ!

AI TK MÌNH MÌNH TK LẠI CHO!

25 tháng 3 2020

Ta có với số nguyên a bất kì:

 | a | - a = a - a = 0 là số chẵn nếu  a\(\ge\)0

| a | - a = -a - a = -2a là số chẵn nếu a < 0

Tóm lại: | a | - a là số chẵn với a nguyên bất kì 

=> | a1 - a2 | - ( a1 - a2) là số chẵn

 | a2 - a3 | - ( a2 - a3) là số chẵn

 | a3 - a4 | - ( a3 - a4) là số chẵn

....

 | an- a1 | - ( an - a1) là số chẵn

=> [ | a1 - a2| + |a2 - a3| + | a3 - a4| +...+ |an - a1| ] - [( a1 - a2) + (a2 - a3) + ( a3 - a4)+...+ (an - a1) ] là số chẵn 

mà   ( a1 - a2) + (a2 - a3) + ( a3 - a4)+...+ (an - a1)  = 0 là số chẵn 

=> | a1 - a2| + |a2 - a3| + | a3 - a4| +...+ |an - a1|  là số chẵn 

Vậy S luôn là 1 số chẵn.