Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chưa học trả lời làm gì cho mất thời gian mất công bạn Thanh Trang Hoàng phải đọc
Cho tam giác ABC và trọng tâm G
1. Vẽ đường thẳng d đi qua điểm G cắt AB, AC. Gọi A' ,B', C' là hình chiếu lần lượt của ABC trên D. Tìm mối liên hệ giữa AA' ,BB' ,CC'.
2. Nếu đuường thẳng d nằm ngoài tam giác ABC và M' là hình chiếu của
Cho tam giác ABC và trọng tâm G
1. Vẽ đường thẳng d đi qua điểm G cắt AB, AC. Gọi A' ,B', C' là hình chiếu lần lượt của ABC trên D. Tìm mối liên hệ giữa AA' ,BB' ,CC'.
2. Nếu đuường thẳng d nằm ngoài tam giác ABC và M' là hình chiếu của G trên D tìm mối qua hệ giữa AA' ,BB' ,CC' và GG'.
G trên D tìm mối qua hệ giữa AA' ,BB' ,CC' và GG'.
ng tâm G
1. Vẽ đường thẳng d đi qua điểm G cắt AB, AC. Gọi A' ,B', C' là hình chiếu lần lượt của ABC trên D. Tìm mối liên hệ giữa AA' ,BB' ,CC'.
2. Nếu đuường thẳng d nằm ngoài tam giác ABC và M' là hình chiếu của G trên D tìm mối qua hệ giữa AA' ,BB' ,CC' và GG'.
Câu hỏi tương tự Đọc thêm Báo cáoCho tam giác ABC và trọng tâm G
1. Vẽ đường thẳng d đi qua điểm G cắt AB, AC. Gọi A' ,B', C' là hình chiếu lần lượt của ABC trên D. Tìm mối liên hệ giữa AA' ,BB' ,CC'.
2. Nếu đuường thẳng d nằm ngoài tam giác ABC và M' là hình chiếu của G trên D tìm mối qua hệ giữa AA' ,BB' ,CC' và GG'.
nha bạn Đàm Vân Anh
bạn vẽ hình ra thì đọc mới hiểu nha !
a) Ta có : BB' vuông góc với d ( giả thiết ) }
MM' vuông góc với d ( giả thiết ) } => BB' // MM' // CC' ( từ vuông góc đến // )
CC' vuông góc với d ( giả thiết ) }
Xét hình thang BB'C'C ( BB' // C'C - chứng minh trên ) có :
M là trung điểm BC ( AM là trung tuyến - giả thiêt ) }
MM' // BB' ; MM' // CC' ( chứng minh trên ) } => M' là trung điểm BB'CC' ( định lí )
Xét hình thang BB'C'C có :
M là trung điểm BC ( AM là trung tuyến ) }
M' là trung điểm B'C' ( chứng minh trên ) } => MM' là đường trung bình của hình thang BB'C'C ( định lí )
=> MM' = BB' + CC' / 2 ( định lí )
ĐÓ MÌNH CHỈ BIẾT LÀM CÂU A) THÔI, XL BẠN NHA !!!
Bài 1:
Gọi E là trung điểm AG và AD là trung tuyến
Mà G là trọng tâm nên \(AE=EG=GD=\dfrac{1}{3}AD\)
Gọi E' và D' lần lượt là hình chiếu của E và D lên d
Ta có AA'//BB'//CC'//DD'//EE'//GG' (cùng vuông góc với d)
Xét hình thang AA'G'G có E là trung điểm AG và EE'//AA'//GG' nên E' là trung điểm A'G'
Do đó EE' là đtb hình thang AA'G'G
Do đó \(EE'=\dfrac{AA'+GG'}{2}\left(1\right)\)
Xét hình thang BB'C'C có D là trung điểm BC và DD'//BB'//CC' nên D' là trung điểm B'C'
Do đó DD' là đtb hình thang BB'C'C
Do đó \(DD'=\dfrac{BB'+CC'}{2}\left(2\right)\)
Xét hình thang EE'D'D có G là trung điểm ED và EE'//DD'//GG' nên G' là trung điểm E'D'
Do đó GG' là đtb hình thang EE'D'D
Do đó \(2GG'=EE'+DD'\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow2GG'=\dfrac{AA'+GG'+BB'+CC'}{2}\)
\(\Rightarrow4GG'=AA'+BB'+GG'+CC'\\ \Rightarrow3GG'=AA'+BB'+CC'\\ \Rightarrow GG'=\dfrac{AA'+BB'+CC'}{3}\)
E sửa lại cái đề đi nha
Kẻ MN đối ME sao cho \(MN=ME\); DE cắt AB tại F
Mà \(AM=MD;\widehat{AMN}=\widehat{EMD}\left(đối.đỉnh\right)\)
Do đó \(\Delta AMN=\Delta DME\left(c.g.c\right)\)
\(\Rightarrow\widehat{ANM}=\widehat{MED};AN=DE\)
Mà 2 góc này ở vị trí so le trong nên AN//DE
Vì tg ABC đều nên \(\widehat{FAD}=60^0;\widehat{ACB}=60^0\)
Mà tg AFD vuông tại F nên \(\widehat{ADF}=90^0-\widehat{FAD}=30^0\)
Do đó \(\widehat{ADF}=\widehat{EDC}=30^0\left(đối.đỉnh\right)\)
Ta có \(\widehat{ECD}=\widehat{ECB}-\widehat{ACB}=90^0-60^0=30^0\Rightarrow\widehat{ECD}=\widehat{EDC}\)
Do đó tg EDC cân tại E nên \(ED=EC\)
\(\Rightarrow EC=AN\)
Ta có AN//DE;DE⊥AB nên AN⊥AB
Vì \(\left\{{}\begin{matrix}\widehat{NAB}=\widehat{ECB}=90^0\\AN=EC\\AB=AC\end{matrix}\right.\) nên \(\Delta ANB=\Delta CEB\left(2.cgv\right)\)
\(\Rightarrow AB=AE\left(1\right);\widehat{NBA}=\widehat{EBC}\\ \Rightarrow\widehat{NBA}+\widehat{ABE}=\widehat{EBC}+\widehat{ABE}=\widehat{ABC}=60^0\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\Delta BNE\) đều
Mà BM là trung tuyến \(\left(NM=ME\right)\) nên cũng là p/g
Vậy \(\widehat{MBE}=\dfrac{1}{2}\widehat{NBE}=30^0\)