K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2015

2x+1.3y=12x

=> 2x+1.3y=(4.3)x

=> 2x+1.3y=4x.3x

=> 2x+1.3y=(22)x.3x

=> 2x+1.3y=22x.3x

+) 2x+1=22x

=> x+1=2x

=> 2x-x=1

=> x=1

+) 3y=3x

=> y=x=1

Vậy x+y=1+1=2.

17 tháng 12 2023

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

9 tháng 3 2016

câu 1: 18

9 tháng 3 2016

Câu 2:

Vậy GTNN của A=-11
Câu 3:
GTNN của  khi -2x+1 nhỏ nhất. Vậy -2x+1=1(vì mẫu số khác 0 mà) nên x=0
vậy GTNN của B là 3
Câu 4
Trong tam giác vuông có cạnh huyền lớn nhất nên:

Vậy a=16
Câu 5:



Ta thấy  nên 

Nhìn vào biểu thức thấy ngay x=1;y=2
Câu 6: Khoảng cách từ A đến O chính là đường chéo của tam giác vuông OAB(với B trên Ox là -3 ý)
Kết quả là 5
Câu 7:
Xét  suy ra x là số lẻ.
Đặt x=2k+1. Thay x=2k+1 vào  có:
 chia hết cho 2 mà y nguyên tố nên y=2. Thay y=2 vào  suy ra x=3

x, y = 1

=> 3x - 2y = 31 - 21 = 3 - 2 = 1

27 tháng 10 2019

x = 2, y = 3
=> 32 - 23 = 9 - 8 = 1

1 tháng 1 2018

\(x^2+y^2-xy-x-y< \frac{1}{2}\)

\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y< 1\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)< 3\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2< 3\)

Đến đây dễ rồi

Cách lớp 8 nhé!