Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
1/6+3x+2=87
3x+2=87-6
3x+2=81
3x+2=34
x+2=4
x =4-2
x =2
2/
(33-3)chia hết cho x =>30 chia hết cho x
(101-11)chia hết cho x 90 chia hết cho x
x thuộc ƯC(30,90)
30=2.3.5
90=2.3.3.5
ƯCLN(30,90)=2.3.5=30
x thuộc ƯC(30,90)=Ư(30)=1 ,2,3,5,6,10,15,30
Sau khi loại các số không hợp điều kiện ta được các số:15,30
Vậy x = 15,30
3/A=2017+20172+20173+.........+20172018
A=(2017+20172)+(20173+20174)+.......(20172017+20172018)
A=2017.(1+2017)+20173.(1+2017)+..........20172017.(1+2017)
A=2017.2018+20173.2018+..................20172017.2018
=>A chia hết cho 2018