Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi chia 3 số này cho 4 đc các số dư là : 1,2,3
Suy ra gọi các số này là : 4k+1 , 4k+2, 4k+3
Tổng : 4k ( 1+2+3) = 4k . 6
Mà 4k chia hết cho 2
6 chia hết cho 2 suy ra điều phải chứng minh ( DPCM là a+b+c chia hết cho 2)
Hơi khó nha! @@@
â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1 là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:
\(x:5=m\)(dư a)
\(y:5=n\)(dư a)
\(x-y⋮5\)
Ta có:
\(5.5=5+5+5+5+5\)
\(5.4=5+5+5+5\)
=> Khoảng cách giữa mỗi tích là 5.
Vậy tích 1 + 5 = tích 2
=> tích 1 (dư a) + 5 = tích 2 (dư a)
Mà:
5 = tích 2 (dư a) - tích 1 (dư a)
5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó = 0))
tích 2 - tích 1 = 5
Không có thời gian làm câu b sorry bạn nhé!
Mình sẽ làm sau!
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
cho biết 7a+2b chia hết cho 13 và a và b là số tự nhiên
chứng minh rằng 10a+b cũng chia hết cho 13
Gọi số dư của a và b khi chia cho m là n.
Ta có: a=m.k+ n b=m.h+n
=>a‐b=m.k+n‐﴾m.h+n﴿
=m.k+n‐m.h‐n
=﴾m.k‐m.h﴿+﴾n‐n﴿
=m.﴾k‐h﴿ chia hết cho m
=>a‐b chia hết cho m
=>ĐPCM
a, Nếu \(a⋮2\Rightarrow\)có 1 số chia hết cho 2
Nếu a ko chia hết cho 2 =>a là số lẻ
a=2k+1
=>a+1=(2k+1)+1
=>2k+2chia hết cho 2(vì 2k chia hết cho 2 và 2 cũng chia hết cho 2)
b, Nếu a chia hết cho 3=> có 1 số chia hết cho 3
Nếu a=3k+1 thì =>a+2=3k+3, chia hết cho 3
nếu a=3k+2 thì
=>a+1=3k+3, chia hết cho 3.
A) Gọi 2 số tự nhiên liên tiếp là n,n +1(n thuộc N)
Nếu nguyễn chia hết cho 2 thì ta có điều chứng tỏ
Nếu = 2k + 1 thì 2 + 1 = 2k +2 chia hết cho 2
B)
Nếu n chia hết cho 2 thì ta có điều cần chứng tỏ
Nếu n = 2k + 1 thì n + 1 = 2k +2 chia hết cho 2
b)Gọi 2 số tự nhiên liên tiếp là:n,n+1,n+2(n
đây là khái niệm rồi còn gì làm gì còn gì đâu mà giải
cái bài này là chứng minh a và b mak