K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

Ta có : \(b=\frac{a+c}{2}\) \(\implies\) \(2b=a+c\)

         \(\frac{2}{c}=\frac{1}{b}+\frac{1}{d}\) 

\(\implies\)  \(\frac{1}{2}.\frac{2}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\)

\(\implies\)  \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\)

\(\iff\)  \(\frac{1}{c}=\frac{b+d}{2db}\)

        \(2db=c.\left(b+d\right)\)

  \(\left(a+c\right)d=cd+cb\)

     \(ad+cd=cd+cb\)

                 \(ad=cb\)

                 \(\frac{a}{c}=\frac{b}{d}\) là một tỉ lệ thức \(\left(đpcm\right)\)

19 tháng 7 2019

\(\frac{a}{b}=\frac{ab+a}{b^2+b};\frac{a+1}{b+1}=\frac{ab+b}{b^2+b}\)

\(+,a>b\Rightarrow ab+a>ab+b\Rightarrow\frac{a}{b}>\frac{a+1}{b+1}\left(vì:b>0\right)\)

\(+,a=b\Rightarrow\frac{a}{b}=\frac{a+1}{b+1}=1\)

\(+,a< b\Rightarrow ab+a< ab+b\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\left(vì:b>0\right)\)

\(Vậy:voi:a>b\text{ thì }\frac{a}{b}>\frac{a+1}{b+1};voi:a=b\text{ thì: }\frac{a}{b}=\frac{a+1}{b+1}=1;voi:a< b\text{ thì:}\frac{a}{b}< \frac{a+1}{b+1}\)

19 tháng 7 2019

thank you

29 tháng 3 2016

a(a+1)(a+2) a thuộc Z

(2a+1)^2 + (2a-1)^2 a thuộc Z

(3a+1)/(3b+2) a,b thuộc Z

(a+b)^n

2 tháng 4 2017

a chịu

b: Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4\right\}\)

hay \(x\in\left\{16;4;25;1;49\right\}\)