K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

Câu hỏi của Nguyễn Thanh Hà - Toán lớp 7 - Học toán với OnlineMath tham khảo

2 tháng 2 2019

đồng dư nhé bạn.

Vì a là số nguyên dương nên \(4^a\equiv1\left(mod3\right)\)

\(\Rightarrow4^a+2\equiv0\left(mod3\right)\)

Mà \(4^a+2\equiv0\left(mod2\right)\)

Mặt khác \(\left(2,3\right)=1\)

\(\Rightarrow4^a+2⋮6\)

Khi đó \(4^a+a+b=\left(4^a+2\right)+\left(a+1\right)+\left(b+2007\right)-2010⋮6\)

Vậy với a,b là các số nguyên dương và a+1;b+2007 chia hết cho 6 thì \(4^a+a+b\)chia hết cho 6

28 tháng 4 2018

\(a+1+b+2007⋮6\Rightarrow a+b+2008⋮6\)

vì 2008 chia cho 6 dư 4 nên a+b chia cho 6 phải dư 2 

vì 4 chia 6 dư 4 \(\Rightarrow4^a\div6\)dư 4 \(\Rightarrow4^a+a+b\div6\)dư 4+2=6 \(\Rightarrow4^a+a+b⋮6\)

18 tháng 9 2016

\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)

\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)

\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)

\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)

19 tháng 9 2016

bài 4 í, có chắc đề đúng ko z

đề bài => 8x3 - y+ 8x+ y3 - 16x+ 16xy = 32

=> 16xy = 32

=> xy = 2

=>\(\left[\begin{array}{nghiempt}x=1=>y=2\\x=-1=>y=-2\\x=2=>y=1\\x=-2=>y=-1\end{array}\right.\)

10 tháng 7 2018

ai làm dược bài 1 mình tích cho

2 tháng 9 2018

Bài 1 : a . Sử dụng công thúc sau : a^n - b^n = ( a-b ) ( a^n-1 + a^n-2 . b + .....+ b^n-1 )

=> A = 21^5 - 1 chia hết cho 20 

=> A = 21^10 - 1 chia hết 400

=> A= 21^10 - 1 chia hết cho 200