Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng BĐT cô-si ta có:
\(\frac{a+b}{2}=\frac{a}{2}+\frac{b}{2}\)\(\ge2\sqrt{\frac{a}{2}.\frac{b}{2}}=2\frac{\sqrt{a}\sqrt{b}}{\sqrt{4}}=2\frac{\sqrt{ab}}{2}=\sqrt{ab}\)
Vậy \(\frac{a+b}{2}\ge\sqrt{ab}\)
Dấu đẳng thức xảy ra khi a=b=0 hoặc a=b=1
Nếu n= 2, tức có hai giá trị x1 và x2, và từ giả thiết ở trên, ta có:
điều phải chứng minh - ở đây \(x_1=a;x_2=b\)
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\)
-Dấu đẳng thức trên xảy ra khi: Trung bình cộng lớn hơn hoặc bằng trung bình nhân
Vì a ≥ 0 nên √a xác định, b ≥ 0 nên b xác định
Ta có: a - b 2 ≥ 0 ⇔ a - 2 a b + b ≥ 0
⇒ a + b ≥ 2 a b ⇔ a + b 2 ≥ a b
Dấu đẳng thức xảy ra khi a = b.
1) a2 - ab + b2 ≥ 0
<=> ( 4a2 - 4ab + b2 ) + 3b2 ≥ 0
<=> ( 2a - b )2 + 3b2 ≥ 0 ( đúng ∀ a,b )
Vậy bđt ban đầu được chứng minh
Đẳng thức xảy ra <=> a = b = 0
2) a2 - ab + b2 ≥ 1/4( a + b )2
<=> 4a2 - 4ab + 4b2 ≥ a2 + 2ab + b2
<=> 4a2 - 4ab + 4b - a2 - 2ab - b2 ≥ 0
<=> 3a2 - 6ab + 3b2 ≥ 0
<=> a2 - 2ab + b2 ≥ 0
<=> ( a - b )2 ≥ 0 ( đúng ∀ a,b )
Vậy bđt ban đầu được chứng minh
Đẳng thức xảy ra <=> a = b
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Nếu a ≥ 0, b ≥ 0, c ≥ 0 thì :
\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow\frac{a+b}{2}-\sqrt{ab}\ge0\)
\(\Leftrightarrow\frac{a-2\sqrt{ab}+b}{2}\ge0\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\)
Dấu ''='' xảy ra khi a = b
Áp dụng bất đẳng thức Cô-si cho hai số không âm, ta có :
\(\dfrac{a+b}{2}\ge\sqrt{ab}\) (1)
\(\dfrac{b+c}{2}\ge\sqrt{bc}\) (2)
\(\dfrac{c+a}{2}\ge\sqrt{ca}\) (3)
Cộng từng vế bất đẳng thức (1), (2), (3) ta được :
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Vậy bất đẳng thức đã được chứng minh
Mở rộng cho bốn số a, b, c, d không âm, ta có bất đẳng thức :
\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)
Mở rộng cho năm số a, b, c, d, e không âm, ta có bất đẳng thức : \(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)
áp dụng BĐT AM-GM với 2 số không âm
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
cộng các vế của BĐT ta có
\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
chia cả hai vế của BĐT cho 2 ta có đpcm
a) Ta có: \(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\Leftrightarrow\left(\sqrt{a+b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2\Leftrightarrow a+b\le a+2\sqrt{ab}+b\)
Điều này luôn đúng với mọi a,b€N, do đó BĐT này đúng, dấu ‘=‘ xảy ra khi a=b=0.
b) Ai giải giúp với :)
Chứng minh bằng biến đổi tương đương :
\(\frac{a+b}{2}\ge\sqrt{ab}\) \(\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge\) (luôn đúng)
Bđt cuối luôn đúng nên bđt ban đầu được chứng minh.
Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\Leftrightarrow a=b\) (a,b không âm)