K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

Từ \(\frac{a}{b}\)> 1, Suy ra: ​an < bn

                        Suy ra:  an + ab < bn + ab

                        Suy ra: a (n + b) < b (n + a)

                        Suy ra: \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

21 tháng 8 2016

Nhầm, Suy ra: an > bn

            Suy ra: an + ab > bn + ab

            Suy ra: a (n + b) > b (n + a)

5 tháng 5 2018

Để A có giá trị là một số nguyên thì \(3n+2⋮n\)

\(\Rightarrow3n+2⋮3n\Rightarrow2⋮n\)

\(\Rightarrow n\inƯ\left(2\right)=\left\{-1;1;2;-2\right\}\)

Vậy để A có giá trị nguyên thì \(n\in\left\{-1;1;2;-2\right\}\)

22 tháng 2 2016

nếu a/b <1 suy ra a/b<a+n/b+n

nếu a/b>1 suy ra a/b>a+n/b+n

Trả lời :

Ta xét 3 trường hợp :  \(\frac{a}{b}\)= 1    

\(\frac{a}{b}\)> 1

\(\frac{a}{b}\)< 1

TH1 : \(\frac{a}{b}\)= 1 <=> a = b thì \(\frac{a+n}{b+n}\)\(\frac{a}{b}\)=1

TH2 : \(\frac{a}{b}\)> 1 <=> a > b <=> a + n > b + n 

Mà \(\frac{a+n}{b+n}\) có phần thừa so với 1 là \(\frac{a-b}{b+n}\)

\(\frac{a}{b}\)có phần thừa so với 1 là \(\frac{a-b}{b}\), vì \(\frac{a-b}{b+n}\)\(\frac{a-b}{b}\)nên \(\frac{a+n}{b+n}\)\(\frac{a}{b}\)

TH3 : \(\frac{a}{b}\)< 1 <=> a < b <=> a + n < b + n

Khi đó \(\frac{a+n}{b+n}\)có phần bù tới 1 là \(\frac{a-b}{b}\) , vì \(\frac{a-b}{b}\)\(\frac{b-a}{b+n}\)nên \(\frac{a+n}{b+n}\)\(\frac{a}{b}\)

14 tháng 3 2017

vì a,b thuộc N*

=>a+n/b+n>a/b

14 tháng 3 2017

Vì a,b \(\in\)N* nên \(\frac{a+n}{b+n}>\frac{a}{b}\)(dựa vào công thức )

Vậy \(\frac{a+n}{b+n}>\frac{a}{b}\)

12 tháng 2 2017

\(A=\frac{n^3-9}{n^3+1}=\frac{n^3+1-10}{n^3+1}=\frac{n^3+1}{n^3+1}-\frac{10}{n^3+1}=1-\frac{10}{n^3+1}\)

\(B=\frac{n^3-8}{n^3+2}=\frac{n^3+2-10}{n^3+2}=\frac{n^2+2}{n^2+2}-\frac{10}{n^2+2}=1-\frac{10}{n^3+2}\)

Vì \(n^3+2>n^3+1\Rightarrow\frac{10}{n^3+2}< \frac{10}{n^3+1}\Rightarrow1-\frac{10}{n^3+2}>1-\frac{10}{n^3+1}\Rightarrow B>A\)

21 tháng 2 2017

Mình mới lớp 5 nên không biết làm bài này.

Xin lỗi nha! Chúc bạn may mắn......mình chính là Đào Minh Tiến!

28 tháng 4 2017

a) \(\frac{n}{n+1}\)và \(\frac{n+2}{n+3}\)

\(\frac{n}{n+1}=\frac{n\cdot\left(n+3\right)}{\left(n+1\right)\cdot\left(n+3\right)}\)

\(\frac{n+2}{n+3}=\frac{\left(n+2\right)\cdot\left(n+1\right)}{\left(n+3\right)\cdot\left(n+1\right)}\)

So sánh : \(n\cdot\left(n+3\right)\)và \(\left(n+2\right)\cdot\left(n+3\right)\)

\(n\cdot\left(n+3\right)=n^2+3n\)

\(\left(n+2\right)\cdot\left(n+3\right)=n^2+5n+6\)

\(n^2+3n< n^2+5n+6\)

\(\Leftrightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)