K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2:

Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc FAE

=>AEDF là hình vuông

22 tháng 11 2016

mình nhớ nữa

10 tháng 7 2019

A B C D F K M E

Sửa đề: Chứng minh góc EFM = 900 ?

Có DF = CK => DF + FK = CK + FK => DK = CF. Xét \(\Delta\)EKF có ^EKF = 900

=> ME2 = KE2 + KM2 (ĐL Pytagoras). Tương tự: KE2 = DE2 + DK2 ; KM2 = CK2 + CM2

Do đó ME2 = DE2 + DK2 + CK2 + CM2. Thay CK = DF, DK = CF ta được:

ME2 = (DE2 + DF2) + (CF2 + CM2) = FE2 + FM2 (ĐL Pytagoras)

Áp dụng ĐL Pytagoras đảo vào \(\Delta\)EMF suy ra \(\Delta\)EMF vuông tại F => ^EFM = 900.

11 tháng 7 2019

Cho mình sửa dòng thứ 2: "Xét \(\Delta\)EKM có ^EKM = 900 "

a) Xét tứ giác ADEC có 

AD//EC(gt)

AD=EC(gt)

Do đó: ADEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: Hai đường chéo AE và DC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà AE cắt DC tại M(gt)

nên M là trung điểm chung của DC và AE(đpcm)

b) Xét tứ giác ABEF có 

M là trung điểm của đường chéo AE(cmt)

M là trung điểm của đường chéo BF(gt)

Do đó: ABEF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

c) Ta có: AB//DC(gt)

AB//FE(ABEF là hình bình hành)

Do đó: FE//DC(Định lí 3 từ vuông góc tới song song)

Xét ΔDMF và ΔCMB có 

MF=MB(gt)

\(\widehat{DMF}=\widehat{CMB}\)(hai góc đối đỉnh)

MD=MC(M là trung điểm của DC)

Do đó: ΔDMF=ΔCMB(c-g-c)

Suy ra: DF=BC(hai cạnh tương ứng)

mà AD=EC(ADEC là hình bình hành)

và AD=BC(ABCD là hình thang cân)

nên DF=EC

Hình thang DCEF(DC//FE) có DF=EC(cmt)

nên DCEF là hình thang cân

29 tháng 6 2017

A B C D H K E M