K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2023

a) Tìm toạ độ giao điểm A của hai đường thẳng y = 3x - 2 (d1) và y = (2/3)x (d2):

Để tìm toạ độ giao điểm A của hai đường thẳng, ta có thể giải hệ phương trình sau:

y = 3x - 2
y = (2/3)x

Thay y = (2/3)x vào phương trình y = 3x - 2, ta được:

(2/3)x = 3x - 2

Giải phương trình này, ta được x = 3/4.Thay x = 3/4 vào phương trình y = (2/3)x, ta được y = (2/3)(3/4) = 7/4.Vậy toạ độ giao điểm A của hai đường thẳng (d1) và (d2) là A(3/4, 7/4).

b) Viết phương trình đường thẳng (d) đi qua A và song song với đường thẳng (d3) là y = 3x - 1:

Để viết phương trình đường thẳng (d) đi qua A và song song với đường thẳng (d3), ta có thể sử dụng công thức sau:

y - y0 = m(x - x0)

Trong đó, (x0, y0) là toạ độ của điểm A và m là hệ số góc của đường thẳng (d3).

Thay các giá trị này vào công thức trên, ta được:

y - 7/4 = 3(x - 3/4)

Sau khi sắp xếp lại các số hạng, ta được phương trình đường thẳng (d) là: y = 3x - 5/4.
29 tháng 8 2023

giúp mình với  pls khocroi

a: (d) vuông góc (d1)

=>a*(-1/2)=-1

=>a=2

=>(d): y=2x+b

Thay x=-2 và y=5 vào (d), ta được:

b-4=5

=>b=9

b:

Sửa đề: (d1): y=-3x+4

Tọa độ giao của (d2) và (d3) là:

3x-7/2=2x-3 và y=2x-3

=>x=1/2 và y=1-3=-2

(d)//(d1)

=>(d): y=-3x+b

Thay x=1/2 và y=-2 vào (d), ta được:

b-3/2=-2

=>b=1/2

=>y=-3x+1/2

b: Phương trình hoành độ giao điểm là:

\(2x+2=\dfrac{-1}{2}x-2\)

\(\Leftrightarrow x\cdot\dfrac{5}{2}=-4\)

hay x=-10

Thay x=-10 vào (d1), ta được:

\(y=-20+2=-18\)

7 tháng 10 2021

Câu b hả bạn

 

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}\dfrac{1}{2}x-2=-2x+3\\y=-2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=5\\y=-2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

b: Vì (d3)//(d2) nên a=-2

Vậy: (d3): y=-2x+b

Thay x=-3 và y=4 vào (d3), ta được: b+6=4

hay b=-2

21 tháng 9 2023

a) \(\left(d_1\right):y=-2x-2\)

\(\left(d_2\right):y=ax+b\)

\(\left(d_2\right)//d_1\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b\ne-2\end{matrix}\right.\)

\(\Leftrightarrow\left(d_2\right):y=-2x+b\)

\(M\left(2;-2\right)\in\left(d_2\right)\Leftrightarrow-2.2+b=-2\)

\(\Leftrightarrow b=2\) \(\left(thỏa.đk.b\ne-2\right)\)

Vậy \(\left(d_2\right):y=-2x+2\)

b) \(\left\{{}\begin{matrix}\left(d_1\right):y=-2x-2\\\left(d_2\right):y=-2x+2\end{matrix}\right.\)

loading...

c) \(\left(d_3\right):y=x+m\)

\(\left(d_1\right)\cap\left(d_3\right)=A\left(x;0\right)\Leftrightarrow\left\{{}\begin{matrix}y=x+m\\y=-2x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0=x+m\\0=-2x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\x=-1\end{matrix}\right.\)

\(\Rightarrow\left(d_3\right):y=x+1\)

 

loading...

 

a: Phương trình hoành độ giao điểm là:

2x+1=x+1

=>2x-x=1-1

=>x=0

Thay x=0 vào y=x+1, ta được:

y=0+1=1

=>A(0;1)

b: Vì (d4) có hệ số góc là -4 nên (d4): y=-4x+b

Thay x=0 và y=1 vào (d4), ta được:

b-4*0=1

=>b=1

=>y=-4x+1

c: Vì (d5)//(d6) nên (d5): y=0,5x+a
Thay x=0 và y=1 vào (d5), ta được:

a+0,5*0=1

=>a=1

=>y=0,5x+1

d: Thay x=0 và y=1 vào (d3), ta được:

0*(m+1)+2m-1=1

=>2m-1=1

=>2m=2

=>m=1

4 tháng 1 2023

a, Hàm số \(\left(d_1\right)y=-2x+3\)

Cho \(y=0=>x=\dfrac{3}{2}\) ta được điểm \(\left(\dfrac{3}{2};0\right)\)

Cho \(x=0=>y=3\) ta được điểm \(\left(0;3\right)\)

Vẽ đồ thị hàm số \(\left(d_1\right)\) đi qua hai điểm trên

     hàm số \(\left(d_2\right)y=x-1\)

Cho \(y=0=>x=1\) ta được điểm \(\left(1;0\right)\)

Cho \(x=0=>y=-1\) ta được điểm \(\left(0;-1\right)\)

Vẽ đồ thị hàm số \(\left(d_2\right)\) đi qua hai điểm trên

# Bạn có thể tự vẽ nhé !!

b, Tọa độ giao điểm \(\left(d_1\right);\left(d_2\right)\) là nghiệm của pt

\(-2x+3=x-1\\ =>-3x=-4\\ =>x=\dfrac{4}{3}\)

Thay \(x=\dfrac{4}{3}\) vào \(\left(d_2\right)\)

\(\Rightarrow y=\dfrac{4}{3}-1=\dfrac{1}{3}\)

Vậy tọa độ giao điểm là : \(\left(\dfrac{4}{3};\dfrac{1}{3}\right)\)

c, Giả sử \(\left(d_3\right)y=ax+b\)

\(\left(d_3\right)\) đi qua \(A\left(-2;1\right)\) và song song với đường thẳng \(\left(d_1\right)y=-2x+3\)

\(\Rightarrow\left\{{}\begin{matrix}4a+b=1\\a=-2;b\ne3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4.\left(-2\right)+b=1\\a=-2;b\ne3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=9\left(t/m\right)\\a=-2\end{matrix}\right.\)

Vậy \(d_3:y=-2x+9\)

#Rinz