K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

Làm:

\(\left\{{}\begin{matrix}\left(d1\right):y=\frac{3}{2}x+\frac{15}{2}\\\left(d2\right):y=-\frac{2}{3}x+\frac{16}{3}\end{matrix}\right.\)

a, Gọi A(x';y') là giao điểm của (d1) và (d2)

\(\Rightarrow\frac{3}{2}x'+\frac{15}{2}=-\frac{2}{3}x'+\frac{16}{3}\left(=y'\right)\)

\(\Leftrightarrow x'=1\)

\(\Rightarrow y'=\frac{-2}{3}.\left(-1\right)+\frac{16}{3}=6\)

Kl: A(-1;6) là giao của d1 và d2

b, (d1) cắt Ox tại B \(\Rightarrow y_B=0\)

Thay vào (d1) ta có:

\(0=\frac{3}{2}x+\frac{15}{2}\)

\(\Leftrightarrow x_B=-5\)

Vậy B(-5;0)

(d2) cắt Ox tại C \(\Rightarrow\left\{{}\begin{matrix}y_C=0\\x_C=8\end{matrix}\right.\Rightarrow C\left(8;0\right)\)

fKẻ AD \(\perp\text{Ox}\)

\(\Rightarrow AD=6\left(\text{đ}v\right)\)

B(-5;0) và C(8;0) \(\Rightarrow BC=13\left(\text{đ}v\right)\)

\(\Delta ABC\): AD là đường cao

\(\Rightarrow S_{ABC}=\frac{1}{2}AD.BC=\frac{1}{2.}.6.13=39\left(\text{đ}v\text{d}t\right)\)

Kl:........

c, Gọi M,N lần lượt là trung điểm của BC và AB của tam giác ABC

Ta cần viết phương trình của đường AM và CN

-/ M là trung điểm của BC \(\Rightarrow\left\{{}\begin{matrix}x_M=\frac{-5+8}{2}=1,5\\y_M=\frac{0}{2}=0\end{matrix}\right.\Rightarrow M\left(1,5;0\right)\)

- Làm tương tự ta được N(-3;3)

-, Đường AM có dạng y=ax+b thoả mãn

\(\left\{{}\begin{matrix}6=-a+b\\0=1,5a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{12}{5}\\b=\frac{18}{5}\end{matrix}\right.\)

Vậy đường AM có phương trình \(y=-\frac{12}{5}x+\frac{18}{5}\)

-, Đường CN có dạng y=a'x+b' thoả mãn

\(\left\{{}\begin{matrix}0=-8a'+b'\\3=-3a'+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a'=-\frac{3}{11}\\b'=\frac{24}{11}\end{matrix}\right.\)

Vậy đường CN có phương trình \(y=-\frac{3}{11}x+\frac{24}{11}\)

1 tháng 9 2023

khó thế

a: Tọa độ A là:

y=0 và -1/2x+4=0

=>x=8 và y=0

=>A(8;0)

Tọa độ B là;

y=0 và -x+4=0

=>x=4 và y=0

=>B(4;0)

Tọa độ C là;

1/2x+4=-x+4 và y=-x+4

=>x=0 và y=4

=>C(0;4)

b: A(8;0); B(4;0); C(0;4)

\(AB=\sqrt{\left(4-8\right)^2+\left(0-0\right)^2}=4\)

\(AC=\sqrt{\left(0-8\right)^2+\left(4-0\right)^2}=4\sqrt{5}\)

\(BC=\sqrt{4^2+4^2}=4\sqrt{2}\)

\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{2}{\sqrt{5}}\)

=>\(sinBAC=\dfrac{1}{\sqrt{5}}\)

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC=\dfrac{1}{2}\cdot4\cdot4\sqrt{5}\cdot\dfrac{1}{\sqrt{5}}=8\)

\(C=4+4\sqrt{5}+4\sqrt{2}\)

6 tháng 7 2016

(d1): y = 1/2x + 2

và (d2): y = -x + 2

1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy.

(d1) là đường thẳng đi qua hai điểm (0; 2) và (-4; 0)

  (d2) là đường thẳng đi qua hai điểm (0; 2) và  (2;0)

2. Tính chu vi và diện tích của tam giác ABC

(d1) và (d2) cùng cắt nhau tại một điểm trên trục tung có tung độ bằng 2

Áp dụng định lý Pi ta go cho các tam giác AOC và BOC vuông ở O ta được:

\(AC=\sqrt{4^2+2^2}=\sqrt{20}=2\sqrt{5}\)

\(BC=\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\)

Chu vi tam giác ABC : AC + BC + AB= 2√5 + 2√2 + 6

≈ 13,30

Diện tích tam giác ABC

\(\frac{1}{2}.OC.AB=\frac{1}{2}.2.6=6CM^2\)

NHÉ THAK NHÌU

a: Tọa độ của điểm A là:

\(\left\{{}\begin{matrix}x_A=0\\y_A=0+3=3\end{matrix}\right.\)

Vậy: A(0;3)

Tọa độ điểm B là:

\(\left\{{}\begin{matrix}x_B=0\\y_B=3\cdot0+7=7\end{matrix}\right.\)

Vậy: B(0;7)

Tọa độ trung điểm I của AB là:

\(\left\{{}\begin{matrix}x_I=\dfrac{0+0}{2}=0\\y_I=\dfrac{3+7}{2}=5\end{matrix}\right.\)

Vậy: I(0;5)

b: Tọa độ điểm J là:

\(\left\{{}\begin{matrix}3x+7=x+3\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)

Vậy: J(-2;1)

I(0;5)

O(0;0)

\(OI=5\)

\(OJ=\sqrt{\left[0-\left(-2\right)\right]^2+\left(0-1\right)^2}=\sqrt{5}\)

\(JI=\sqrt{\left(0+2\right)^2+\left(5-1\right)^2}=2\sqrt{5}\)

Vì \(OI^2=OJ^2+JI^2\)

nên ΔOIJ vuông tại J

18 tháng 9 2023

1) \(\left\{{}\begin{matrix}\left(d_1\right):y=2x\\\left(d_2\right):y=-\dfrac{1}{2}x+5\end{matrix}\right.\)

loading...

2) Theo đồ thi ta có :

\(\left(d_1\right)\cap\left(d_2\right)=A\left(2;4\right)\)

3) \(\left(d_2\right)\cap Ox=B\left(a;0\right)\)

\(\Leftrightarrow-\dfrac{1}{2}a+5=0\)

\(\Leftrightarrow\dfrac{1}{2}a=5\)

\(\Leftrightarrow a=10\)

\(\Rightarrow\left(d_2\right)\cap Ox=B\left(10;0\right)\)

4) \(OA=\sqrt[]{\left(2-0\right)^2+\left(4-0\right)^2}=\sqrt[]{20}=2\sqrt[]{5}\)

   \(OB=\sqrt[]{\left(10-0\right)^2+\left(0-0\right)^2}=\sqrt[]{10^2}=10\)

  \(AB=\sqrt[]{\left(10-2\right)^2+\left(0-4\right)^2}=\sqrt[]{80}=4\sqrt[]{5}\)

Ta thấy :

 \(OA^2+AB^2=20+80=OB^2=100\)

\(\Rightarrow\Delta OAB\) vuông tại A

\(\Rightarrow\widehat{OAB}=90^o\)

\(sin\widehat{AOB}=\dfrac{AB}{OB}=\dfrac{4\sqrt[]{5}}{10}=\dfrac{2\sqrt[]{5}}{5}\)

\(\Rightarrow\widehat{AOB}\sim63,43^o\)

\(\Rightarrow\widehat{OBA}=90^o-63,43^o=26,57^o\)

5) Chu vi \(\Delta OAB\) :

\(AB+OA+OB=4\sqrt[]{5}+2\sqrt[]{5}+10=10\sqrt[]{5}+10=10\left(\sqrt[]{5}+1\right)\left(đvmd\right)\)

Diện tích \(\Delta OAB\) :

\(\dfrac{1}{2}AB.OA=\dfrac{1}{2}.4\sqrt[]{5}.2\sqrt[]{5}=20\left(đvdt\right)\)