Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Tọa độ A là:
y=0 và -1/2x+4=0
=>x=8 và y=0
=>A(8;0)
Tọa độ B là;
y=0 và -x+4=0
=>x=4 và y=0
=>B(4;0)
Tọa độ C là;
1/2x+4=-x+4 và y=-x+4
=>x=0 và y=4
=>C(0;4)
b: A(8;0); B(4;0); C(0;4)
\(AB=\sqrt{\left(4-8\right)^2+\left(0-0\right)^2}=4\)
\(AC=\sqrt{\left(0-8\right)^2+\left(4-0\right)^2}=4\sqrt{5}\)
\(BC=\sqrt{4^2+4^2}=4\sqrt{2}\)
\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{2}{\sqrt{5}}\)
=>\(sinBAC=\dfrac{1}{\sqrt{5}}\)
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC=\dfrac{1}{2}\cdot4\cdot4\sqrt{5}\cdot\dfrac{1}{\sqrt{5}}=8\)
\(C=4+4\sqrt{5}+4\sqrt{2}\)
(d1): y = 1/2x + 2
và (d2): y = -x + 2
1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy.
(d1) là đường thẳng đi qua hai điểm (0; 2) và (-4; 0)
(d2) là đường thẳng đi qua hai điểm (0; 2) và (2;0)
2. Tính chu vi và diện tích của tam giác ABC
(d1) và (d2) cùng cắt nhau tại một điểm trên trục tung có tung độ bằng 2
Áp dụng định lý Pi ta go cho các tam giác AOC và BOC vuông ở O ta được:
\(AC=\sqrt{4^2+2^2}=\sqrt{20}=2\sqrt{5}\)
\(BC=\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\)
Chu vi tam giác ABC : AC + BC + AB= 2√5 + 2√2 + 6
≈ 13,30
Diện tích tam giác ABC
\(\frac{1}{2}.OC.AB=\frac{1}{2}.2.6=6CM^2\)
NHÉ THAK NHÌU
a: Tọa độ của điểm A là:
\(\left\{{}\begin{matrix}x_A=0\\y_A=0+3=3\end{matrix}\right.\)
Vậy: A(0;3)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x_B=0\\y_B=3\cdot0+7=7\end{matrix}\right.\)
Vậy: B(0;7)
Tọa độ trung điểm I của AB là:
\(\left\{{}\begin{matrix}x_I=\dfrac{0+0}{2}=0\\y_I=\dfrac{3+7}{2}=5\end{matrix}\right.\)
Vậy: I(0;5)
b: Tọa độ điểm J là:
\(\left\{{}\begin{matrix}3x+7=x+3\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
Vậy: J(-2;1)
I(0;5)
O(0;0)
\(OI=5\)
\(OJ=\sqrt{\left[0-\left(-2\right)\right]^2+\left(0-1\right)^2}=\sqrt{5}\)
\(JI=\sqrt{\left(0+2\right)^2+\left(5-1\right)^2}=2\sqrt{5}\)
Vì \(OI^2=OJ^2+JI^2\)
nên ΔOIJ vuông tại J
1) \(\left\{{}\begin{matrix}\left(d_1\right):y=2x\\\left(d_2\right):y=-\dfrac{1}{2}x+5\end{matrix}\right.\)
2) Theo đồ thi ta có :
\(\left(d_1\right)\cap\left(d_2\right)=A\left(2;4\right)\)
3) \(\left(d_2\right)\cap Ox=B\left(a;0\right)\)
\(\Leftrightarrow-\dfrac{1}{2}a+5=0\)
\(\Leftrightarrow\dfrac{1}{2}a=5\)
\(\Leftrightarrow a=10\)
\(\Rightarrow\left(d_2\right)\cap Ox=B\left(10;0\right)\)
4) \(OA=\sqrt[]{\left(2-0\right)^2+\left(4-0\right)^2}=\sqrt[]{20}=2\sqrt[]{5}\)
\(OB=\sqrt[]{\left(10-0\right)^2+\left(0-0\right)^2}=\sqrt[]{10^2}=10\)
\(AB=\sqrt[]{\left(10-2\right)^2+\left(0-4\right)^2}=\sqrt[]{80}=4\sqrt[]{5}\)
Ta thấy :
\(OA^2+AB^2=20+80=OB^2=100\)
\(\Rightarrow\Delta OAB\) vuông tại A
\(\Rightarrow\widehat{OAB}=90^o\)
\(sin\widehat{AOB}=\dfrac{AB}{OB}=\dfrac{4\sqrt[]{5}}{10}=\dfrac{2\sqrt[]{5}}{5}\)
\(\Rightarrow\widehat{AOB}\sim63,43^o\)
\(\Rightarrow\widehat{OBA}=90^o-63,43^o=26,57^o\)
5) Chu vi \(\Delta OAB\) :
\(AB+OA+OB=4\sqrt[]{5}+2\sqrt[]{5}+10=10\sqrt[]{5}+10=10\left(\sqrt[]{5}+1\right)\left(đvmd\right)\)
Diện tích \(\Delta OAB\) :
\(\dfrac{1}{2}AB.OA=\dfrac{1}{2}.4\sqrt[]{5}.2\sqrt[]{5}=20\left(đvdt\right)\)
Làm:
\(\left\{{}\begin{matrix}\left(d1\right):y=\frac{3}{2}x+\frac{15}{2}\\\left(d2\right):y=-\frac{2}{3}x+\frac{16}{3}\end{matrix}\right.\)
a, Gọi A(x';y') là giao điểm của (d1) và (d2)
\(\Rightarrow\frac{3}{2}x'+\frac{15}{2}=-\frac{2}{3}x'+\frac{16}{3}\left(=y'\right)\)
\(\Leftrightarrow x'=1\)
\(\Rightarrow y'=\frac{-2}{3}.\left(-1\right)+\frac{16}{3}=6\)
Kl: A(-1;6) là giao của d1 và d2
b, (d1) cắt Ox tại B \(\Rightarrow y_B=0\)
Thay vào (d1) ta có:
\(0=\frac{3}{2}x+\frac{15}{2}\)
\(\Leftrightarrow x_B=-5\)
Vậy B(-5;0)
(d2) cắt Ox tại C \(\Rightarrow\left\{{}\begin{matrix}y_C=0\\x_C=8\end{matrix}\right.\Rightarrow C\left(8;0\right)\)
fKẻ AD \(\perp\text{Ox}\)
\(\Rightarrow AD=6\left(\text{đ}v\right)\)
B(-5;0) và C(8;0) \(\Rightarrow BC=13\left(\text{đ}v\right)\)
\(\Delta ABC\): AD là đường cao
\(\Rightarrow S_{ABC}=\frac{1}{2}AD.BC=\frac{1}{2.}.6.13=39\left(\text{đ}v\text{d}t\right)\)
Kl:........
c, Gọi M,N lần lượt là trung điểm của BC và AB của tam giác ABC
Ta cần viết phương trình của đường AM và CN
-/ M là trung điểm của BC \(\Rightarrow\left\{{}\begin{matrix}x_M=\frac{-5+8}{2}=1,5\\y_M=\frac{0}{2}=0\end{matrix}\right.\Rightarrow M\left(1,5;0\right)\)
- Làm tương tự ta được N(-3;3)
-, Đường AM có dạng y=ax+b thoả mãn
\(\left\{{}\begin{matrix}6=-a+b\\0=1,5a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{12}{5}\\b=\frac{18}{5}\end{matrix}\right.\)
Vậy đường AM có phương trình \(y=-\frac{12}{5}x+\frac{18}{5}\)
-, Đường CN có dạng y=a'x+b' thoả mãn
\(\left\{{}\begin{matrix}0=-8a'+b'\\3=-3a'+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a'=-\frac{3}{11}\\b'=\frac{24}{11}\end{matrix}\right.\)
Vậy đường CN có phương trình \(y=-\frac{3}{11}x+\frac{24}{11}\)