Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đường tròn tâm O có đường kính AB R2 . Gọi M là điểm di động trên đường tròn O . Điểm M khác AB, ; dựng đường tròn tâm M tiếp xúc với AB tại H . Từ A và B kẻ hai tiếp tuyến AC và BD với đường tròn tâm M vừa dựng.
a) Chứng minh BM AM , lần lượt là các tia phân giác của các góc ABD và BAC .
b) Chứng minh ba điểm C M D , , nằm trên tiếp tuyến của đường tròn tâm O tại điểm M .
c) Chứng minh AC BD không đổi, từ đó tính tích AC BD. theo CD .
d) Giả sử ngoài AB, trên nửa đường tròn đường kính AB không chứa M có một điểm N cố định. gọi I là trung điểm của MN , kẻ IP vuông góc với MB . Khi M chuyển động thì P chuyển động trên đường cố định nào.
Cần giải câu d
a) Tứ giác ACEI có: $\angle ACE+\angle EIA=90+90=180^o$ nên là tứ giác nội tiếp.
(Câu này dễ, bạn tự giải thích.)
b) Do AFEM nội tiếp nên $\angle EMB=\angle EFA=90-\angle FAB=90-\angle CAB=\angle EBM.$
Từ đó tam giác EBM cân tại E.
c) Tâm đường tròn ngoại tiếp (AEF) không chạy trên đường tròn cố định bạn nhé. Nó chạy trên đường trung trực đường thẳng AM. Ta chứng minh nó cố định. Mà A cố định nên chỉ cần chứng minh M cố định.
Từ câu b thu được I là trung điểm MB. Vậy M cách I một khoảng IB không đổi. Tức là M cố định.
Từ đó thu được đpcm.
Ps: Câu c không chắc.
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')