Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác CAO và tam giác DBO:
OA=OB(do O là trung điểm của đoạn AB)
AOC=BOD(hai góc đối đỉnh)
OC=OD(do O là trung điểm của đoạn CD)
Do đó tam giác CAO bằng tam giác DBO (c.g.c)
=> AC=DB (hai cạnh tương ứng)
và ACO=BDO (hai góc tương ứng)
Mà chúng lại ở vị trí so le trong nên suy ra AC/DB(đpcm)
b) Xét tam giác BAC và tam giác ABD:
AB: cạnh chung
AC=DB(CMT)
BAC=ABD( do tam giác CAO bằng tam giác DBO)
Do đó tam giác BAC bằng tam giác ABD (c.g.c)
=> BC=AD (hai cạnh tương ứng)
và ABC=BAD ( hai góc tương ứng)
Mà chúng lại ở vị trí so le trong nên suy ra AD//CB
c) Từ tam giác BAC bằng tam giác ABD nên suy ra góc ACB = góc BDA ( hai góc tương ứng)
d) Xét tam giác HCO và tam giác BDO:
OH=OI (gt)
HOC=BOD( đối đỉnh)
OC=OD(do O là trung điểm của đoạn DC)
Do đó tam giác HCO bằng tam giác BDO (c.g.c)
=>CHO=OID(hai góc tương ứng )
mà CHO=90 độ ( do CH vuông góc với AB )
cho nên OID=90 độ
=> DI vuông góc với AB
(hình tự vẽ nhé)
a: Xét tứ giác ACBD có
O là trung điểm của AB
O là trung điểm của CD
Do đó: ACBD là hình bình hành
Suy ra: AD//BC; AC//BD
a: Xét tứ giác ACBD có
O là trung điểm của AB
O là trung điểm của CD
Do đó: ACBD là hình bình hành
Suy ra: AC//BD; AD//BC
E D C B H K x M N A
a) Xét \(\Delta BEA\) và \(\Delta DCA\) có:
AE = AC (gt)
\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)
AB = AD (gt)
\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)
\(\Rightarrow BE=CD\) (2 cạnh t/ư)
b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)
\(DN=\frac{1}{2}CD\) (N là tđ)
mà BE = CD \(\Rightarrow BM=DN\)
Vì \(\Delta BEA=\Delta DCA\) (câu a)
\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)
hay \(\widehat{MBA}=\widehat{NDA}\)
Xét \(\Delta ABM\) và \(\Delta ADN\) có:
AB = AD (gt)
\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)
BM = DN (c/m trên)
\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)
mà \(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)
\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)
\(\Rightarrow M,A,N\) thẳng hàng.
a )
ta có : \(\widehat{C_1}=\widehat{C_2}\) ( 2 góc đối đỉnh )
mà \(\widehat{C_1}=\widehat{B}\) ( tam gíac ABC cân tại A )
Do do : \(\widehat{C_2}=\widehat{B}\)
xét \(\Delta ABDva\Delta ICE,co:\)
AB = AC = IC ( gt )
BD=CE ( gt )
\(\widehat{C_2}=\widehat{B}\) (cmt )
Do do : \(\Delta ABD=\Delta ICE\left(c-g-c\right)\)