K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

ghi sai để rồi : 

Cho 2 đa thức: P(x)= x+ 2ax+ 3

                      Q(x)=2x2 _ 3ax +20

Tìm a= ? Biết P(1) = Q(2)     

chỗ dấu " = " là dấu " + " hay " - " vậy bạn

 
17 tháng 4 2016

dấu bằng nha

13 tháng 5 2022

Ta có \(A\left(1\right)=B\left(-2\right)\Leftrightarrow12+2a+a^2=8-\left|2a+3\right|\left(-2\right)+a^2\)

\(\Leftrightarrow4+2a=2\left|2a+3\right|\)

đk a >= -2 

\(\left[{}\begin{matrix}4a+6=4+2a\\4a+6=-2a-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-1\left(tm\right)\\a=-\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)

1 tháng 5 2019

a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)

 \(=2x^4+7x^3-2x^2+2x+6\)

\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)

\(=-2x^4-10x^3+6x^2-2x-4\)

b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)

                                      \(=-3x^3+4x^2+2\)

19 tháng 3 2022

a, \(M+N=2x^2+x^2-2xy-2xy-3y^2+3y^2+1-1=3x^2-4xy\)

\(M-N=2x^2-x^2-2xy+2xy-3y^2-3y^2+1+1=x^2-6y^2+2\)

b, \(P\left(x\right)+Q\left(x\right)=x^3-4x^3+2x^2-6x+x+2-5=-3x^3+2x^2-5x-3\)

\(P\left(x\right)-Q\left(x\right)=x^3+4x^3-2x^2-6x-x+2+5=5x^3-2x^2-7x+7\)

(Nghỉ dịch từ ngày 28/2/2022)Bài 1:a) Cho hai đa thức:   M = 2x2 – 2xy – 3y2 + 1;     N = x2 – 2xy + 3y2 – 1Tính M + N; M – N.b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5+ Tính P(x) + Q(x)+ Tính P(x) - Q(x)Bài 2: Tìm x biết:a) (x - 8 )( x3+ 8) = 0;               b) (4x - 3) – ( x + 5) = 3(10 - x)Bài 3: Cho đa thức:   P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.a) Thu gọn và xắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của...
Đọc tiếp

(Nghỉ dịch từ ngày 28/2/2022)

Bài 1:

a) Cho hai đa thức:   M = 2x2 – 2xy – 3y2 + 1;     N = x2 – 2xy + 3y2 – 1

Tính M + N; M – N.

b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5

+ Tính P(x) + Q(x)

+ Tính P(x) - Q(x)

Bài 2: Tìm x biết:

a) (x - 8 )( x3+ 8) = 0;               b) (4x - 3) – ( x + 5) = 3(10 - x)

Bài 3: Cho đa thức:   P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.

a) Thu gọn và xắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.

b) Tính P(1) và P(–1).

Bài 4:  Tính nhanh (nếu có thể):

 

Bài 5: Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.

a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.

b) Chứng minh AM vuông góc với BC.

c) Tính độ dài các đoạn thẳng BM và AM.

d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?

Bài 6: Cho ΔABC cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc với BC.

a) Chứng minh: HB = HC.

b) Tính độ dài AH.

c) Kẻ HD vuông góc với AB (D∈AB), kẻ HE vuông góc với AC (E∈AC).

Chứng minh ΔHDE cân.

d) So sánh HD và HC.

1

Bài 2:

a: \(\left(x-8\right)\left(x^3+8\right)=0\)

=>\(\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b: \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)

=>\(4x-3-x-5=30-3x\)

=>3x-8=30-3x

=>6x=38

=>\(x=\dfrac{38}{6}=\dfrac{19}{3}\)

Bài 6:

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

b: Ta có: HB=HC

H nằm giữa B và C

Do đó: H là trung điểm của BC

=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=5^2-4^2=9\)

=>\(AH=\sqrt{9}=3\left(cm\right)\)

c: Ta có: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

=>HD=HE

=>ΔHDE cân tại H

d: Ta có: HD=HE
HE<HC(ΔHEC vuông tại E)

Do đó:HD<HC

18 tháng 8 2017

Ta có

P ( x ) = 2 x 3 − 3 x + x 5 − 4 x 3 + 4 x − x 5 + x 2 − 2 = x 5 − x 5 + 2 x 3 − 4 x 3 + x 2 + ( 4 x − 3 x ) − 2 = − 2 x 3 + x 2 + x − 2  Và  Q ( x ) = x 3 − 2 x 2 + 3 x + 1 + 2 x 2 = x 3 + − 2 x 2 + 2 x 2 + 3 x + 1 = x 3 + 3 x + 1

Khi đó

M ( x ) = P ( x ) + Q ( x ) = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 3 + x 2 + ( x + 3 x ) − 2 + 1 = − x 3 + x 2 + 4 x − 1

Bậc của  M ( x )   =   - x 3   +   x 2   +   4 x   -   1   l à   3

Chọn đáp án C

28 tháng 7 2018

Chọn C

Ta có: P(x) + Q(x) = (-2x3 + 2x2 + x - 1) + (2x3 - x2 - x + 2)

= x2 + 1 > 0

Đa thức không có nghiệm

Ta có: \(Q\left(x\right)=P\left(x\right)-H\left(x\right)\)

\(\Leftrightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(\Leftrightarrow H\left(x\right)=1+x+2x^2+...+2015x^{2015}-x^{2015}-x^{2014}-...-x^2-x-1\)

\(\Leftrightarrow H\left(x\right)=2014x^{2015}+2013x^{2014}+2012x^{2013}+...+x^2\)

12 tháng 4 2018

a, P(x) = 3x\(^2\) + 2x\(^2\) -2x + 7 - x\(^2\) - x

= \((3x^2+2x^2-x^2)\) + (-2x - x) + 7

= 4x\(^2\) - 3x + 7

Q(x)=-3x\(^3\) + x - 14 - 2x - x\(^2-1\)

= -3x\(^3\) + (x-2x) +(-14-1) - x\(^2\)

= -3x\(^3\) - x - 15 - x\(^2\)

b, N(x)=P(x)-Q(x) =(4x\(^2\)-3x+7)-(-3x-x-15-x)

= 4x\(^2\)-3x+7 + 3x\(^3\)+x+15+x\(^2\)

= (4x\(^2+x^2\)) + (\(-3x+x\))+(7+15)+3x\(^3\)

= \(5x^2\) - 2x + 12 +3x\(^3\)

M(x)=P(x)+Q(x)

=(4x\(^2\)-3x+7)+(-3x\(^3\)-x-15-x\(^2\))

=4x\(^2\)-3x+7-3x\(^3\)-x-15-x\(^2\)

=(4x\(^2\)-\(x^2\)) + (-3x-x) + (7-15)-3x\(^3\)

= 3 \(x^2\) - 4x - 8 -3x\(^3\)