K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2023

`{((a-1)x+y=a),(x+(a-1)y=2):}`

`<=>{(ax-x+y=a),(x+ay-y=2):}`

`<=>{(a(x-1)=x-y<=>a=[x-y]/[x-1]),(x+[x-y]/[x-1]-y=2):}`

`<=>x(x-1)+x-y-y(x-1)=2(x-1)`

`<=>x^2-x+x-y-xy+y=2x-2`

`<=>x^2-xy-2x+2=0`

_________________________________________

`b)x^2-xy-2x+2=0`

`<=>xy=x^2-2x+2`

`<=>y=x-2+2/x`

Thay `y=x-2+2/x` vào `6x^2-17y=7` có:

 `6x^2-17(x-2+2/x)=7`

`<=>6x^3-17x^2+34x-34-7x=0`

`<=>6x^3-12x^2-5x^2+10x+17x-34=0`

`<=>(x-2)(6x^2-5x+17)=0`

   Mà `6x^2-5x+17 > 0`

  `=>x-2=0<=>x=2`

 `=>y=2-2+2/2=1`

Thay `x=2;y=1` vào `(a-1)x+y=a` có: `(a-1).2+1=a<=>a=1`

15 tháng 1 2023

spam ?

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Lời giải:

Sử dụng bổ đề. Với $f(x)$ có hệ số nguyên thì $f(a)-f(b)\vdots a-b$ với $a,b$ là nguyên khác nhau.

Áp dụng vào bài toán, ta dễ dàng chỉ ra $g(x^3)-g(-1)\vdots x^3+1\vdots x^2-x+1(1)$

Giả sử $f(x)=x^2+xg(x^3)\vdots x^2-x+1$

$\Leftrightarrow g(x^3)+x\vdots x^2-x+1(2)$

$(1);(2)\Rightarrow x+g(-1)\vdots x^2-x+1$ (vô lý)

Do đó ta có đpcm.

3 tháng 3 2021

Akai Haruma Giáo viên, mk ko hiểu cái chỗ g(x^3)+x chia hết cho x^2-x+1 với cái dòng tiếp theo ngay sau đó ấy. Bn giải thích rõ đc ko??

Đề: tìm x biết : \(2.\left|2-x\right|+3.\left|x+1\right|-x+1=2x\) giải •nếu \(-1x\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=-x-1\) •nếu \(-1\le x< 2\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=x+1\) •nếu\(x\ge2\) thì: \(\left|2-x\right|=x-2\\ \left|x+1\right|=x+1\) ◘ từ 3 ĐK trên, ta có: \(\left[{}\begin{matrix}2.\left(2-x\right)+3.\left(-x-1\right)-x+1=2x\left(với\:-1>x\right)\\2.\left(2-x\right)+3.\left(x+1\right)-x+1=2x\left(với\:-1\le x...
Đọc tiếp

Đề: tìm x biết : \(2.\left|2-x\right|+3.\left|x+1\right|-x+1=2x\)

giải

•nếu \(-1>x\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=-x-1\)

•nếu \(-1\le x< 2\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=x+1\)

•nếu\(x\ge2\) thì: \(\left|2-x\right|=x-2\\ \left|x+1\right|=x+1\)

◘ từ 3 ĐK trên, ta có:

\(\left[{}\begin{matrix}2.\left(2-x\right)+3.\left(-x-1\right)-x+1=2x\left(với\:-1>x\right)\\2.\left(2-x\right)+3.\left(x+1\right)-x+1=2x\left(với\:-1\le x< 2\right)\\2.\left(x-2\right)+3.\left(x+1\right)-x+1=2x\left(với\:x\ge2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4-2x-3x-3-x+1=2x\\4-2x+3x+3-x+1=2x\\2x-4+3x+3-x+1=2x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-8x=-2\\-2x=-8\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\left(loại\right)\\x=4\left(loại\right)\\x=0\left(loại\right)\end{matrix}\right.\)

vậy phương trình đã cho vô nghiệm.

P/S: giải dùm cho 1 bạn nhờ, đừng ném đa hay gạch j nhé !!!

My name is ???

1

My name is ???

27 tháng 5 2019

Cái này mình biết chút... nhưng mà giải trên đây không tiện lắm bạn có chới zalo ko gửi ad qua cho mình để kp rồi mình gửi lời giải qua luôn...

21 tháng 6 2019

ok pn. Số zalo của mk là: 037 678 1096. Cảm ơn bạn nhiều