Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`{((a-1)x+y=a),(x+(a-1)y=2):}`
`<=>{(ax-x+y=a),(x+ay-y=2):}`
`<=>{(a(x-1)=x-y<=>a=[x-y]/[x-1]),(x+[x-y]/[x-1]-y=2):}`
`<=>x(x-1)+x-y-y(x-1)=2(x-1)`
`<=>x^2-x+x-y-xy+y=2x-2`
`<=>x^2-xy-2x+2=0`
_________________________________________
`b)x^2-xy-2x+2=0`
`<=>xy=x^2-2x+2`
`<=>y=x-2+2/x`
Thay `y=x-2+2/x` vào `6x^2-17y=7` có:
`6x^2-17(x-2+2/x)=7`
`<=>6x^3-17x^2+34x-34-7x=0`
`<=>6x^3-12x^2-5x^2+10x+17x-34=0`
`<=>(x-2)(6x^2-5x+17)=0`
Mà `6x^2-5x+17 > 0`
`=>x-2=0<=>x=2`
`=>y=2-2+2/2=1`
Thay `x=2;y=1` vào `(a-1)x+y=a` có: `(a-1).2+1=a<=>a=1`
Lời giải:
Sử dụng bổ đề. Với $f(x)$ có hệ số nguyên thì $f(a)-f(b)\vdots a-b$ với $a,b$ là nguyên khác nhau.
Áp dụng vào bài toán, ta dễ dàng chỉ ra $g(x^3)-g(-1)\vdots x^3+1\vdots x^2-x+1(1)$
Giả sử $f(x)=x^2+xg(x^3)\vdots x^2-x+1$
$\Leftrightarrow g(x^3)+x\vdots x^2-x+1(2)$
$(1);(2)\Rightarrow x+g(-1)\vdots x^2-x+1$ (vô lý)
Do đó ta có đpcm.
Akai Haruma Giáo viên, mk ko hiểu cái chỗ g(x^3)+x chia hết cho x^2-x+1 với cái dòng tiếp theo ngay sau đó ấy. Bn giải thích rõ đc ko??
Cái này mình biết chút... nhưng mà giải trên đây không tiện lắm bạn có chới zalo ko gửi ad qua cho mình để kp rồi mình gửi lời giải qua luôn...